Preformed modular trefoil and installation method

Heating – Tumbler-type rotary - drum furnace

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C432S118000, C432S119000

Reexamination Certificate

active

06257878

ABSTRACT:

BACKGROUND
The present invention relates to internal structures of rotary kilns, and more particularly to trefoil structures in rotary kilns, and even more particularly to preformed, modular trefoils and installation methods for the same.
A rotary kiln is a long refractory-lined cylinder that thermally treats material as its flows from its upper, feed end to its lower, outlet end. The kiln is slightly inclined and rotates about its longitudinal axis to promote material flow. Most kiln processes are counter-current such that the hot gas flows from the material outlet end to the material inlet end. The kiln includes a steel shell having a refractory lining on its inside surface. For larger kilns, the refractory lining typically includes a refractory brick lining. Rotary kilns generally operate on a twenty four hour basis for several months between scheduled down periods.
Rotary kilns are employed for calcining limestone, calcining and sintering dolomite and magnesite, lime re-burning in paper plants, processing cement, calcining petroleum coke, various incineration processes, and similar thermal processes. In a lime manufacturing process, coarse limestone is fed into the feed end of the kiln. As the limestone feed tumbles down the kiln, it is dried and then calcined into lime by the hot gases.
Rotary kilns may employ internal heat exchanger structures, such as refractory trefoils or metallic heat exchanges that divide the cross section of the kiln into three or more segments to enhance the heat transfer from the gas to the material, improve mixing of the material, and provide similar benefits. Although trefoils enhance heat transfer from the gas to the material, conventional trefoils constrict the overall area through which the counter-current air stream may flow. Such a constriction is an undesirable design limitation of the trefoil because the constriction increases the pressure in the burning zone and the air velocity in the trefoil area, therefore affecting the flame burning characteristics and heat transfer, and may also increase the dust load carried by the air stream. The weight of current refractory trefoil designs is considerably more per foot if rotary kiln than a single layer brick lining, and thus exerts additional mechanical stress on the kiln shell.
Trefoils within a rotary kiln encounter harsh operating conditions. For example, internal gas temperatures may typically be 1000 to 3000 degrees F. in a highly basic atmosphere in a rotary lime kiln, although temperatures outside of this range are possible depending on the particular application. The trefoil must take the structural loading and erosion from several hundred tons per day of partially calcined rock that slides across or falls against the surfaces of the trefoil. The trefoil is continuously rotated with the kiln, which subjects the trefoil components to varying compressive and tension force. Further, the trefoil must withstand the kiln shell deflection upon revolution over its roller supports. The trefoil is critical to the operation of the manufacturing facility—often failure of a trefoil during operation requires the entire manufacturing facility to be shut down for repairs. Without the trefoil's improved heat exchange, product sintering may be inadequate. Many kilns also employ expensive metallic heat exchangers, which require refractory trefoil heat exchangers “down kiln” of them to avoid damage from high gas temperatures. Trefoils generally reduce fuel consumption and also government-regulated stack emissions. Failure of a trefoil may therefore cause a rotary kiln plant to become “non-compliant”, leading to a shut-down or significant monetary penalties.
Conventional trefoils typically are from 9-15 feet long along the longitudinal kiln axis, depending on the kiln diameter and other parameters, and having “spokes” or legs typically from, 9-12″ thick. A refractory trefoil often obtains the vast majority of its heat exchange benefits in about the first 3 inches of material thickness beneath the surfaces exposed to the heat. A trefoil “leg” is exposed to hot gasses and material on two faces during each revolution; thus trefoil thicknesses over about 6 inches are unnecessary for the heat exchange function. Conventional trefoils employ leg thicknesses from about 9-12 inches primarily to provide mechanical stability within the severe rotary kiln environment. These thicknesses have been found to be needed because of tendency of conventional bricks to shift from proper alignment and thus fail prematurely and from the inability to obtain satisfactory strength from “in-situ” cast and cured monolithic trefoils.
Conventional trefoils typically are formed from individual (usually interlocking) refractory bricks, although some were formed from “in-situ” cast and cured monolithics. The manufacturing process for producing bricks includes high pressure pressing, often at 15,000 to 20,000 pounds per square inch (PSI), and firing, often up to approximately 2,400 degrees F. (or higher). Bricks produced by pressing and firing typically have high density, low porosity, good volume stability upon heating, and high mechanical strength at standard and elevated temperatures. However, brick size and complexity of shape axe limited by the mechanical limitations of pressing and handling equipment.
Brick trefoils, therefore, generally employ small standard, interlocking shapes that require specially engineered and formed shapes to form contours at the shell and near the hub. The limitations of brick technology generally require leg thicknesses greater than about the 6 inches optimum for heat transfer. Installation is labor-intensivle and requires specially skilled artisans to form the trefoil. They also require complicated forms (specific to a single rotary kiln size) to support them during construction. Thus, brick trefoils are slow to install and are expensive.
Further, technical considerations of trefoil design include the kiln diameter, kiln ovality, expected kiln deflection, expansion or contraction characteristics of the brick upon heating, kiln internal temperature range, and type of product.
For example, a particular design concern is the choice of the number of joints that form the trefoil leg. The joints enable a small amount of flexing, for example upon kiln shell deflection during rotation, which increases the elasticity and diminishes excessive mechanical stress of the brick trefoil leg. However, the working of adjacent bricks, which may cause wear and failure, counter-balances the benefit of increased elasticity. Thus, an appropriate number and design of brick trefoil joints, which is mostly based on empirical knowledge, balances these factors
U.S. Pat. No. 5,330,351, entitled “Trefoil Construction For Rotary Kilns” (“Ransom”) discloses a trefoil which has legs that are each formed from four basic, precast shapes assembled in the kiln. Several blocks of some of the types of shapes are employed to form the trefoil. Conventional brick trefoils generally include shapes that interlock, including, for example, tongue-and-groove type interlocking pieces, as disclosed for example in the '351 patent (Ransom). The interlocking shapes prevent or limit relative movement of the bricks, which may subject the interlocking parts to shear forces. Because of the high strength required of the protruding portions, among other factors, the interlocking bricks or shapes employed in rotary kiln trefoils generally must have a high hot modulus of rupture (HMOR). For example, the '351 patent (Ransom) discloses ultra-high strength castable having a HMOR of 3000 PSI at 2500 degrees F.
Other examples of conventional trefoils include U.S. Pat. No. 3,030,091, entitled, “Rotary Kiln with Heat Exchanger” (“Witkin”) which discloses a rotary kiln having a trefoil heat exchanger with each section having a dam at the downstream end. Further, U.S. Pat. No. 3,036,822, Entitled,“Rotary Kiln with Built-in Heat Exchanger” (“Anderson”) discloses a rotary kiln with partitions dividing the material stream into six segments. U.S. Pat. Nos. 3

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Preformed modular trefoil and installation method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Preformed modular trefoil and installation method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Preformed modular trefoil and installation method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2453217

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.