Static structures (e.g. – buildings) – Facers; e.g. – modules – mutually bonded by internal settable... – Laterally related modules; e.g. – back-to-back
Reexamination Certificate
2000-10-19
2004-11-23
Safavi, Michael (Department: 3673)
Static structures (e.g., buildings)
Facers; e.g., modules, mutually bonded by internal settable...
Laterally related modules; e.g., back-to-back
C052S309150, C052S309170, C052S442000, C052S591200
Reexamination Certificate
active
06820384
ABSTRACT:
THE FIELD OF THE INVENTION
The present invention relates to Insulating Concrete Form Systems utilizing foam block forms and, more specifically, to improvements to the foam panels, the foam corner panels, the panel spacing ties, the corner spacing ties and the interaction of the ties with the foam panels.
BACKGROUND OF THE INVENTION
Insulating Concrete Form Systems (ICFS) are known which serve to contain fluid concrete while it solidifies as well as provide insulation for the finished structure. Such systems utilize a plurality of individual units, panels or blocks aligned horizontally and vertically in an interlocking arrangement to create forms for concrete walls. Each block comprises a pair of foamed plastic panels which are retained in a spaced relationship parallel to each other by a plurality of ties.
The spacing ties are truss-like and include opposing flange portions which reside within respective opposing foam panels. The opposing flange portions are separated by an intermediate web portion connected therebetween, enabling the tie to hold and secure the panel portions. Some prior designs teach slide-in ties having flanges which are configured to be complementary with slots formed in the panels. Such block designs have the disadvantage of requiring work-site assembly.
Other prior art ICFS designs teach the use of prefabricated foam block concrete forms in which opposing flanges of each tie are molded into respective opposing foam walls of the foam block. While each of these ICFS designs teaches the use of a foam form block having a lower longitudinal edge designed to engageably receive only the upper longitudinal edge of a similar block therebelow, and an upper longitudinal edge designed to engageably receive only the lower longitudinal edge of a similar block thereupon, none teach the use of a prefabricated, continuous-concrete-wall-generating, foam form block having opposing horizontal longitudinal edges designed to engageably receive either opposing horizontal longitudinal edge of an adjacent block having a substantially similar longitudinal edge design.
It is also known in the art to design ties for a foam form block that will produce two independently structurally sound half-height blocks if cut laterally in half. However, the top half of the block becomes unusable waste, in the event that it is necessary to remove the top half of the block along the horizontal midpoint, due to the fact that these ties are not used with foam blocks that are designed to be vertically reversibly interlocking with adjacent blocks. Furthermore, these prior art tie designs fail to optimize distribution of the flow of fluid concrete across the web portion of the tie. Rather, they serve to impede even distribution of the fluid concrete between the foam panels. Finally, none of the blocks used with these prior art tie designs are premarked along their horizontal midpoint to serve as a visual guide for accurately cutting the blocks in half laterally.
The prior art teaches the use of corner ties molded within foam blocks configured to function as corner molds for concrete poured therebetween. Such corner ties are intended to serve as anchors for exterior surfaces fastened to the exterior surface of the foam-and-concrete wall. However, the forces transmitted from the exterior wall covering to the corner ties to which it is anchored can cause the corner ties to be ripped from the foam block within which it is seated, unless the corner tie has a concrete-engaging member. Of the prior art corner ties that include a concrete-engaging member, some require on-site assembly of the concrete-engaging member, while others provide a corner tie having flange dimensions that yield flanges that are incapable of functioning as anchors to an exterior facade. None teach the design of a corner tie having a concrete-engaging member that requires no on-site assembly, and having flanges configured to function as anchors for an exterior facade.
Nowhere in the prior art is it taught to design a pre-built, solid-wall-generating, foam form corner block that is vertically reversible along its longitudinal axis, that is to say, a corner block having opposing horizontal longitudinal edges that can stackably engageably receive either opposing longitudinal edge of an adjacent block having similarly designed longitudinal edges. Such a block could function as a left corner or a right corner, and could be cut in half laterally yielding two usable corner halves. Such a design would yield increased versatility of the block and, consequently, produce less waste.
SUMMARY OF THE INVENTION
The apparatus of the present invention overcomes the weaknesses and disadvantages associated with prior art designs and teaches a more versatile tie and block design. The block of the present invention is a preconstructed unit including a plurality of tie members spaced apart from, and parallel to, one another.
The block of the present invention can be constructed in any of a variety of configurations including, but not limited to, a substantially planar or straight block and a 90° corner block. The block is designed to yield a solid, continuous concrete wall construction when connected horizontally and vertically to blocks of similar construction.
Either block configuration includes an opposing pair of foam panels. Identical arrays of alternating teeth and sockets are formed along opposing horizontal longitudinal edges of each panel to enable it to removably engage either opposing horizontal longitudinal edge of a vertically adjacent block panel having a substantially identical array of teeth and sockets formed along either longitudinal edge. Similarly, identical arrays of alternating teeth and sockets are formed along opposing vertical end edges of each panel to enable it to removably engage either opposing vertical end of a horizontally adjacent block panel having a substantially identical array of teeth and sockets formed along either vertical end edge.
As a result, a planar block of the present invention can vertically and horizontally engageably receive adjacent whole or half planar or corner blocks of the present invention, regardless of vertical orientation with regard to its horizontal longitudinal axis and regardless of horizontal orientation with regard to its vertical axis. Likewise, a corner block of the present invention can vertically and horizontally engageably receive adjacent whole or half planar or corner blocks of the present invention, regardless of vertical orientation with regard to its horizontal longitudinal axis and regardless of horizontal orientation with regard to its vertical axis. The corner block of the present invention can, therefore, function as a left corner block or a right corner block, as well as provide two functional half corner block units when the corner block is divided along its horizontal midpoint. To facilitate separating a block of either planar or corner configuration along its horizontal midpoint, the outer surface of either opposing panel of each block is pre-marked along its horizontal midpoint.
The horizontal dimension of a tooth along the longitudinal axis of the panel will determine the minimum increment to which a block can be vertically separated and yield a functioning block segment. Therefore, versatility of a foam form block to be separated into vertical segments is inversely proportional to the horizontal longitudinal tooth dimension. Conversely, the greater the cross-sectional area of the teeth, the stronger the teeth and the greater the cross-sectional area of the cavities. The greater the cross-sectional area of the cavities, the easier it is to remove contaminants therefrom to allow the block to be fully seated upon or below an adjacent block. Consequently, the optimum tooth dimension must balance the need for versatility in trimming the block into vertical segments with the need for tooth strength and easy removal of cavity contaminants.
Each tie has a web portion connecting opposing truss and flange members molded within opposing foam panels. The web is designed to provide centr
Blackwell Sanders Peper Martin LLP
Reward Wall Systems, Inc.
Safavi Michael
LandOfFree
Prefabricated foam block concrete forms and ties molded therein does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Prefabricated foam block concrete forms and ties molded therein, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Prefabricated foam block concrete forms and ties molded therein will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3353685