Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – With indicator or control of power plant
Reexamination Certificate
1999-11-24
2001-08-07
Dolinar, Andrew M. (Department: 3747)
Data processing: vehicles, navigation, and relative location
Vehicle control, guidance, operation, or indication
With indicator or control of power plant
C701S115000, C123S406420, C123S435000
Reexamination Certificate
active
06272426
ABSTRACT:
TECHNICAL FIELD
The present invention relates generally to engine controls and, more particularly, to predicting cylinder pressure for on-vehicle control.
BACKGROUND ART
The existence of cyclic variability in the quality of combustion in spark-ignited, internal combustion engine has long been recognized. Such variations may be particularly severe for lean air-fuel mixtures, i.e., when the ratio of air to fuel is greater than that implied by chemical stoichiometry. The analysis of these variations is made difficult by the existence of several possible mechanisms that could act separately or in concert. One problem is the variations in the delivery of air and fuel into the cylinder. The effect of variations either in mass of fuel or its distribution tend to be exacerbated under lean conditions, when the total mass of fuel is relatively smaller. It is recognized that the fluid dynamic effects during engine intake and exhaust strokes are dominant contributors in cyclic variations. The importance of the residual gas, both content and amount, has also been recognized and is generally regarded as the cause of the frequently observed alternating pattern of high and low work output cycles, although other mechanisms have been proposed. Investigators have considered cyclic variations from the standpoint of understanding the mechanism well enough to effect a reduction in the variation by imposing control. They found that significant correlation exists between consecutive firings of a particular cylinder, and that various relevant measurable quantities, such as indicated mean effective pressure, are subject to reasonable prediction one cycle in advance. Various means of imposing control, such as through changes of spark timing and fuel delivery have been considered.
Because the combustion process depends on several state variables and is nonlinear, it is a candidate for exhibiting the complex behavior called deterministic chaos, or just chaos for short. If chaotic behavior takes place in a system with many important state variables (e.g., more than ten), it is termed high-dimensional chaos. While high dimensional chaos is in principle deterministic, it is usually so complex that as a practical matter (at least with current understanding), it can only be treated with methods applicable to stochastic (random) systems. Hence to be of present practical importance, e.g., for better fundamental understanding or real-time control of a physical system, it is necessary for the identified chaotic behavior to be low-dimensional, (e.g., have a number of important state variables that is less than ten).
Prior art has established models that generate data scatter that looks very much like that of the real data, but no one has been able to predict when the next outlier will occur. Thus, there exists a need to improve the accuracy of prediction of undesirable combustion events during lean (high air/fuel ratio) engine operation.
SUMMARY OF THE INVENTION
It is, therefore, an object of the invention to provide an improved and reliable means for predicting undesirable cylinder pressures of future combustion events. Another object of the invention is to improve the operation of lean burn internal combustion engines. Generally, the present invention improves air-fuel control during intake control device transitions by compensating for fuel transport dynamics and the actual fuel injected into each cylinder.
In one aspect of the invention, an apparatus for predicting cylinder pressure for on-vehicle control of an internal combustion engine includes a piston sensor, a cylinder pressure sensor, and a controller. The piston sensor is coupled to a piston located in the engine. The piston sensor detects the piston position and generates a piston position signal. The cylinder pressure sensor is coupled to a cylinder located in the engine. The cylinder pressure sensor detects the cylinder pressure and generates a cylinder pressure signal. The controller receives both the piston position signal and the cylinder pressure signal. A neural network, located in the controller, uses this data to predict an undesirable cylinder pressure during a future combustion event. The controller then modifies the future combustion event in response to the predicted undesirable cylinder pressure.
The present invention achieves an improved and reliable means for predicting undesirable cylinder pressures of future combustion events. Also, the present invention is advantageous in that it allows engine operation with very lean air to fuel ratios, being extremely flexible.
Additional advantages and features of the present invention will become apparent from the description that follows, and may be realized by means of the instrumentalities and combinations particularly pointed out in the appended claims, taken in conjunction with the accompanying drawings.
REFERENCES:
patent: 5076098 (1991-12-01), Miwa
patent: 5093792 (1992-03-01), Taki et al.
Dolinar Andrew M.
Drouillard Jerome R.
Ford Global Technologies Inc.
LandOfFree
Predicting cylinder pressure for on-vehicle control does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Predicting cylinder pressure for on-vehicle control, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Predicting cylinder pressure for on-vehicle control will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2441335