Image analysis – Applications – Reading paper currency
Reexamination Certificate
2000-03-09
2002-02-26
Johns, Andrew W. (Department: 2721)
Image analysis
Applications
Reading paper currency
Reexamination Certificate
active
06351552
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates to methods for identifying a currency note by imaging the entire note just prior to destruction of or dispensing the note. The imaging takes place as close to the destruction or dispensing device as possible. The notes serial code or other identifying feature can then be read from the stored image.
2. Description of Related Art
Optical character recognition (“OCR”) is a technology commonly used in the currency processing field for lifting the serial code or code from processed notes. OCR technology is used, for example, for identifying specific notes processed by a high speed currency processing machine, such as those machines manufactured and marketed by Currency Systems International of Irving, Tex., by lifting a note's serial code using a camera device and then recording the serial code to the note processed.
By way of example, a stack of currency can be fed into the high speed currency processing machine. As one of the functions of the machine, an OCR device reads the serial code or code of notes passed through the machine for processing. These serial codes can be recorded and identified to specific notes as they are processed. One of the functions of the high speed currency processor may be to sort currency by denomination and stack fit notes for bundling. As the fit notes are stacked, the data processing capabilities of the currency processing machine track the location in the stack of each currency note by serial code. For example, for a processed stack or bundle of one hundred notes in twenty dollar denominations, data is accumulated that will indicate the specific serial code on each note in the stack or bundle and position of each note in the stack.
This information can be particularly useful in a number of potential applications. For example, heavily soiled or torn notes are periodically taken out of circulation. An OCR device reads the serial code for each note that is to be destroyed. The serial code of each of these notes is then recorded and stored for later reference. The notes are then taken from the area where they are scanned to a shredding machine where they are destroyed. The purpose of recording the serial code of the destroyed notes is to have a record of which notes have been destroyed and therefore, taken out of circulation. However, since the notes are often scanned by the OCR device several feet away from the shredding machine, there is the potential for notes to be scanned as being destroyed that are not actually destroyed because those notes failed to make it into the shredding machine. Some examples of reasons for some notes not making it into the shredding machine after being scanned by the OCR device include accidental mistakes and intentional takings of these notes. Furthermore, OCR devices have several inherent shortcomings. For instance, there may be occasions when not all characters of a note's serial code may be readable by an OCR device. Additionally, there may be parts of a note that are obscured due to soiling or other condition of the note, thus making it impossible for an OCR device to accurately determine the note's serial code.
Another problem with destroying currency notes that are too worn out or soiled to put back into circulation is that every note identified as a note that needs to be destroyed must be shipped to a central bank or governmental entity, which controls the currency, for destruction. These institutions must verify that notes tagged for destruction are actually destroyed. However, if these entities allowed individual banks to destroy notes, there is currently no feasible method to ensure that the notes were actually destroyed rather than removed since there are typically no remnants from the destroyed notes that can be identified systematically to determine which notes have been destroyed.
As an example of the inadequacies of current currency audits and OCR technology outside the sphere of note destruction, consider the dispensing of currency to account holders via an automatic teller machine (ATM). Currently, no accurate method of determining which notes from a stack of notes, of which the serial codes or other identifying information is known, have been dispensed to an account holder. Such information is useful in verifying that an account holder did indeed receive a certain sum of cash from the ATM and to verify that thieves have not stolen money from the machine. Such information is also useful in determining which notes by serial number or code have been removed from the system without authorization. However, even utilizing OCR technology does not provide sufficient accuracy and reliability to gather this type of information. This is because an OCR scan is not always able to read the entire serial code from a currency note, thus making it difficult if not impossible to identify with certainty the notes dispensed to specific accounts.
Consequently, a need exists for a method that will accurately identify whether or not a note has actually been destroyed or dispensed. This method should provide positive note identification and an image of notes that have actually been destroyed or dispensed. Such a method should reduce the possibility of incorrectly identifying notes as having been destroyed or dispensed when in fact they have not been.
SUMMARY OF INVENTION
The invention involves apparatus and methods for identifying currency notes that have been destroyed or dispensed. This is accomplished by capturing an image of a note immediately prior to the note entering the shredding tines of a shredding machine or the output of an ATM using a camera or other image capturing device. The image is then stored in a database and optical character recognition (OCR) software is used to determine the serial code or other distinguishing feature of the destroyed or dispensed note. Furthermore, assuming that the note is too heavily soiled or damaged for the OCR to determine the serial code of the note, an image of the note can also be stored and displayed to a user at a later time. Thereby, the identity of the notes whose serial code cannot be determined by the OCR software can be determined by other means. By scanning the notes just as prior to their destruction, an accurate database of destroyed notes may be maintained. Likewise, by scanning the notes just prior to dispensing them from an ATM, an accurate database of dispensed notes may be maintained, thus allowing comparison of dispensed notes to notes placed within the ATM for accurate accounting and auditing. Furthermore, if the serial codes of notes that need to be destroyed, based on age, soiled condition, or some other factor, is known before the notes are sent for shredding, then an accurate determination of how many and which of these notes have actually been destroyed and which notes may have been taken by a thief can be made. The invention increases security by decreasing the likelihood that a note may be recorded as having been destroyed when, in actuality, it has been removed from the note destruction machine prior to destruction. The invention increases accurate accounting of which notes have been destroyed. Furthermore, the recipient of the images may be a central bank and the present invention provides added security for the central bank if and when they allow a commercial bank to destroy currency notes.
The above as well as additional features and advantages of the present invention will become apparent in the following written detailed description.
REFERENCES:
patent: 3782543 (1974-01-01), Martelli et al.
patent: 3916194 (1975-10-01), Novak et al.
patent: 3932272 (1976-01-01), Carnes, Jr. et al.
patent: 4264808 (1981-04-01), Owens et al.
patent: 4346851 (1982-08-01), Bernardi et al.
patent: 4587434 (1986-05-01), Roes et al.
patent: 4611345 (1986-09-01), Ohnishi et al.
patent: 4905839 (1990-03-01), Yuge et al.
patent: 4905840 (1990-03-01), Yuge et al.
patent: 4991008 (1991-02-01), Nama
patent: 5039020 (1991-08-01), Leuthold et al.
patent: 5099423 (1992-03-01), Graef et al.
Haycock Richard G.
Lindenblatt James Bowie
Weaver William A. V.
Cahoon Colin P.
Carstens, Yee & Cahoon
Johns Andrew W.
Recot Inc.
LandOfFree
Predestruction note image audit does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Predestruction note image audit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Predestruction note image audit will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2951257