Precision casting and dead-mold casting in plastic/carbon...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Cellular products or processes of preparing a cellular...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C521S181000, C521S186000

Reexamination Certificate

active

06599953

ABSTRACT:

The present invention relates to a molding material for the precision casting and dead-mold casting of metals or metal alloys comprising plastic and/or carbon aerogels, and a process for the preparation of such molding materials.
Precision casting in ceramic shell molds is a standard casting technique for preparing precision moldings from a wide variety of alloys. The molds are usually prepared by the lost-wax process, i.e., a wax molding of the part to be cast is wetted with a silica sol, sand-coated in several steps, dried, and then the shell mold is baked wherein the wax is melted and drained or burned in an autoclave. With modern casting processes, it is possible to achieve conformal casting with high fidelity (J. Sprunk, W. Blank, W. Grossmann, E. Hauschild, H. Rieksmeier, H. G. Rosselnbruch; Feingu&bgr; für alle Industriebereiche, 2nd edition, Zentrale für Gu&bgr;verwendung, Düsseldorf 1987; K. A. Krekeler, Feingie&bgr;en, in: Handbuch der Fertigungstechnik Bd. 1, editor: G. Speer, Hanser Verlag, München 1981).
Aerogels are highly porous open-cell oxidic solids which are usually obtained by sol-gel processes from metal alkoxides by polymerization, polycondensation to gels, followed by supercritical drying. For some years, it has also been possible to prepare plastic gels by a sol-gel process and to convert them to a highly porous organic solid by supercritical drying. Pyrolysis of such plastic aerogels under a protective gas or vacuum at temperatures above 1000° C. converted them to carbon aerogels. Like the oxidic aerogels, plastic and carbon aerogels have extremely low effective thermal conductivities (on the order of some mW/K/m), but they are significantly lighter than the oxidic aerogels. The physical and mechanical properties of plastic and carbon aerogels are documented in the literature (R. W. Pekala, C. T. Alviso, F. M. Kong, S. S. Hulsey; J. Non-Cryst. Solids 145 (1992) 90; R. W. Pekala, C. T. Alviso, Mat. Res. Soc. Symp. Proc. 270 (1992) 3; R. Petricevic, G. Reichenauer, V. Bock, A. Emmerling, J. Fricke; J. Non-Cryst. Solids (1998)). They can be varied within a wide range by appropriately selecting the starting materials, their mixing ratio and the preparation process.
Therefore, it has been the object of the present invention to simplify the prior art processes for the preparation of molding materials for the precision casting and dead-mold casting of metals and metal alloys, especially to reduce the time required for drying in the process.
In a first embodiment, the above object is achieved by a molding material for the precision casting and dead-mold casting of metals or metal alloys comprising highly porous open-cell plastic and/or carbon aerogels, obtainable by the sol-gel polymerization of organic plastic materials, optionally followed by partial or complete pyrolysis of the plastic aerogel obtained.
The molding material according to the invention is particularly suitable for use in lost-wax processes, eliminating the need for application in multiple steps, as with oxidic gels of the prior art.
According to conventional techniques, the molds thus obtained are filled with a melt, and the melt is solidified. In the usual casting techniques, the heat is dissipated through the shell mold or the molding sand. In contrast, since carbon aerogels are quasi-adiabatic, casting and solidification in aerogels means that the heat is dissipated solely through feeders and risers or through especially provided cooling means; conveniently, but not necessarily, the feeders and risers themselves may be used for this purpose. Thus, a completely controlled solidification is possible, and the assembly can be adjusted in accordance with the range of properties required.
The aerogel molds prepared according to the invention are especially suitable for casting aluminum alloys (the casting mold having to be heated virtually not at all, since there is no heat dissipation through the mold itself). This increases economic efficiency because energy costs can be lowered. Magnesium and titanium alloys do not react with carbon either; thus, the carbon aerogel molds are also a good selection as molding materials for these alloys under protective gas or vacuum.
One particular advantage of the molding materials according to the invention is that the sol-gel formation can be completed within a few hours at room temperature, i.e., in particular, at temperatures below the pour point of the wax. Supercritical drying, as with the purely inorganic gels, is not necessary. Nevertheless, it is possible to adjust the cell size in the micrometer range. In addition, when drying is performed in a supercritical range of temperatures, cell sizes in the nanometer range are also possible.
In addition, the molding materials according to the invention may also contain inorganic or organic filler materials. This essentially means stable materials which are inert under solidification conditions. For example, inorganic filler materials may be selected from alumina, titania and/or quartz each of which may be employed in a proportion of from 5 to 30% by volume. Fillers according to the present invention further include fibers, allowing a fiber reinforcement by organic, inorganic, carbon and/or SiC fibers in appropriately the same proportion.
Similarly, it is also possible to employ organic fillers, for example, thermoplastic or thermosetting plastic particles, such as polystyrene, or organic (such as polyacrylonitrile), inorganic (such as SiC) or carbon fibers. However, it has to be taken care that these materials are also removed by melting or burning off in the pyrolysis of the plastic gels. Using such materials, it is possible, however, to control the shrinkage during the pyrolysis.
It is particularly preferred according to the present invention to employ for the molding material resorcinol/formaldehyde-based plastic aerogels which, when having an appropriate composition and an appropriate content of basic catalyst, can be converted to a microstructured plastic aerogel at temperatures of between 20 and 50° C. without supercritical drying. By selecting the composition, the sol-gel polymerization can be adjusted in such a way, for example, that a highly viscous liquid is first formed which can be applied to a wax mold. This can also be done in several working cycles so that the layer thickness can be adapted to the requirements of the applications in casting.
Thus, another embodiment of the present invention is a process for the preparation of casting molds for the precision casting and dead-mold casting of metals or metal alloys using highly porous open-cell plastic and/or carbon aerogels, comprising the steps:
a) wetting a wax mold with a plastic sol of an appropriate composition containing an appropriate catalyst;
b) converting the sol to a gel at a temperature below the pour point of the wax;
b′) optionally, applying one or more additional layers of the sol each of which is partially or completely converted to the gel form;
c) drying the gel at a temperature below the pour point of the wax; and
d) melting and draining or burning off the wax from the solidified gel at a temperature above the pour point of the wax.
An alternative process for preparing the casting mold consists in:
a) placing a wax molding in a container;
b) filling the container partly or wholly with a plastic sol;
c) converting the sol to the gel form at a temperature below the pour point of the wax;
d) drying the gel at a temperature below the pour point of the wax; and
e) melting and draining or burning off the wax from the solidified gel at a temperature above the pour point of the wax.
Thus, it is possible simply to place the wax molding in a suitable container, fill it with the starting solution for the plastic aerogels and then perform the process for preparing the aerogel.
In this way, solid, but light-weight quasi-adiabatic molds can be prepared by analogy with the known block mold process (which essentially uses gypsum).
The conversion temperature of the solution to a plastic aerogel must be adapted to the melting point of the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Precision casting and dead-mold casting in plastic/carbon... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Precision casting and dead-mold casting in plastic/carbon..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Precision casting and dead-mold casting in plastic/carbon... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3056556

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.