Precise fit golf club fitting system and golf shaft...

Games using tangible projectile – Golf – Club or club support

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C473S409000

Reexamination Certificate

active

06702692

ABSTRACT:

BACKGROUND OF INVENTION
The invention relates to new data obtained. With my invention process it is now possible to record and track specific shaft reactions associated to individuals swings. The golfers/players fitting characteristics or needs should be addressed individually. To help define the swing characteristics of individual golfers, it is therefore necessary to expand on the original application, “Precise Fit Golf Club Fitting System and Golf Shaft Selection Method and Apparatus”, identified above.
Established reliable speed standards for club selection in the prior application to begin the testing through statistical data obtained, are verifiable. For example, the 86-mph boundary outlined to continue testing in the R flex after reliable speeds have been established, has proven through my inventive process to be accurate. After acceptable reliable speed ranges have been established and the appropriate shaft is chosen, the testing continues. I have further established that while golfers/players can hit a golf ball in some degree with any shaft stiffness (flex), reliable speeds that register under 86-mph when using the R flex will result in loss of overall distance. The guidelines established by my inventive process indicate that reliable speed ranges are accurate for testing of an individual. However, specific flexes (stiffnesses) of shafts, as they exist by current or prior art, have no defined correlation with reliable club head speeds in the final determination. Golfers/players with identical club head speeds sometimes need or require different shaft stiffnesses. All golfers/players are not alike and have specific and individual characteristics that are priorities or properties of their own individual swing, and only by testing individually can a proper determination of shaft selection of stiffness and flex choice values be defined for better play. It is my conclusion that shafts as currently exist on the market by prior or current art, in steel or composite/graphite, may or may not conform to this guideline. Depending on individual manufacturers'specifications, the parameters may be changed, but the overall ability of my inventive process to measure the function of a shaft does not. The relationship of angles/degrees and clubhead speeds does not change from that disclosed in my prior application. Absolute standards in technical terms in today's golf industry, regarding shafts of steel or composite/graphite and regarding stiffness is at the discretion of the manufacturer and/or their finished products. Existing standards relate to the way shafts have been marketed currently or prior. A manufacturer could simply change the stiffness (flex) factors, torque factors and call it the same product, but not inform the public of such changes, which I know has happened or occurred. One may surmise that “it” functioned as a golf shaft in the market, so it is what they say it is. This means the public trusts the golf industry with their definition and marketing of golf shafts, but the truth is such may not be true, particularly to composite/graphite shafts and some steel shafts.
Quote: “The letter's X, R, S and L are commonly employed in the golf club art to denote shaft stiffness characteristics. X stands for extra stiff, S for stiff, R for regular and L for ladies. These terms are relative and have no commonly accepted absolute definition agreed upon to cover all types of shafts” as described in detail in U.S. Pat. No. 4,169,595. I have concluded this is an accurate statement. While the golf industry still offers low, mid and high flex points (flex choices) in shafts, the history of the golf industry has centered on the flex (stiffness) values.
Until my patent pending process enabled accurate measurement of each golf shaft as it relates to an individual player, the golf industry could only repeat their past misconceptions. Until flex stiffness, as marketed by the industry, becomes secondary to the flex point or kick points, confusion in the publics mind will continue. For that reason I may choose to refer to kick or flex points as “Predetermined Defined Give Points” or PDGs. With my inventive process a change is now possible to set standards for shafts through further research and discovery. A new series of shafts with the consistency of steel and the lightwightness of composite/graphite may now be perfected, which is the subject of another U.S. application of mine. Existing shafts may be re-engineered with flex or kick points being the prime objectives for standardization in the market and not flex stiffnesses, as have previously existed, now and for the future. One could argue these standards exist in the industry today regarding shafts, but improvements to shafts as exist by prior or current art must evolve. It has been my experience when testing composite/graphite shafts that differences can occur in the performance of one order or shipment of shafts received to the next. In order for the new shafts received and installed in the demo clubs to test and register the same readings with my inventive process as before, separate testing with the new and the old demos are made and compared to detect any differences in performance. Repeated testing with individual golfers/players with those specific composite/graphite shafts, for verification shaft reaction and performance, occurs. Shafts with the same distinguishing marks, logos, stiffness, and torque values may not be the same product as previously received. For improvement, a new series of shafts designed around playability, according to my inventive process, is needed and should be developed and perfected in the future which is the subject of another U.S. application of mine. Some steel shafts being offered in new clubs for 1998 were offered in the same basic form in most major brands in 1950, 1954 and 1957, to name a few. Thus, they are not new shafts, but old shafts sold at a new time.
Torque: rotating or twisting of a golf shaft. It should be pointed out that information available to the ultimate consumer in terms of torque values are mixed, regarding the specifications of golf shafts, either steel or composite/graphite. With few exceptions, the steel shaft manufacturers do not specify any torque value in their printed material. However, on the other side, composite/graphite torque values are indicated visibly in most instances in all printed material as regards marketing the shaft product. If torque values of steel shafts are not readily published along with the torque values indicated by composite/graphite shafts, one may ask why? It should be noted that titanium shafts in the printed material I have observed, list the torque values as it relates to their specific product. I would conclude this as marketing strategy toward the public. It has been and now is not known that consistency between steel and composite/graphite shafts does or does not correspond with any uniformity. There are times when composite/graphite shafts have advantages over steel shafts in their present form; “special needs” is an example. There are no bad shafts, only wrong shafts in individual clubs or sets of clubs.
It does not matter if the torque is unknown to the testing operator or golfer/player. My inventive process can still select a shaft that is best suited for the player/golfer at that time. Even though torque values of steel shafts have not been made readily available or known by the public, it is not absolutely necessary to know torque values to select a shaft that works by my inventive process. If the torque values, as established by the manufacturers of composite/graphite shafts were consistent from shaft to shaft, they would be of value from a golfer/player standpoint in some applications. I have found that the influence of different torque values can affect the overall performance of a shaft. Different torque values offered in shafts have been claimed by individual manufacturers to be reliable. Thus, one must rely on the torque values supplied and identified by the manufacturers to be accurate. The question arises

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Precise fit golf club fitting system and golf shaft... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Precise fit golf club fitting system and golf shaft..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Precise fit golf club fitting system and golf shaft... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3278612

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.