Powered volume control for distributed audio system

Electrical audio signal processing systems and devices – Including amplitude or volume control – Remote

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C381S077000, C381S104000

Reexamination Certificate

active

06389139

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an audio signal amplification and distribution system for multiple speaker applications, and, in particular, to a new and improved wall-mounted “powered” volume control having an integrated audio power amplifier for connecting between a signal source and one or more remote speakers.
2. Description of the Related Art
Broadcasting audio or music, such as background music, within a facility is generally desirable to provide a relaxing or entertaining atmosphere or to enhance a desired theme or mood. In particular, buildings such as houses, hotels, restaurants, casinos, shopping malls, and other indoor or outdoor areas often are equipped with sound distribution systems to provide music and paging capability to different locations in or around the building or area.
One simple way to provide a distributed audio sound system is to provide a number of individual signal sources and amplifiers throughout the building or area. While such a sound system may be acceptable for distributing AM or FM radio broadcasts, it would typically not be suitable for rebroadcast of an audio recording or public address message since the music or sound may not be synchronized from room-to-room. Also such sound systems necessitate multiple signal sources which can increase the costs of the system significantly, particularly if high fidelity sound reproduction is desired. For these reasons, it is generally preferred to use a single high-fidelity signal source.
A typical commercial high-fidelity sound distribution system provides for a single signal source and amplifier to provide a signal to a plurality of speakers distributed throughout a building or area. Systems of this nature advantageously provide synchronized music or paging capability to multiple areas of a building or facility. However, such systems have certain undesirable limitations or disadvantages. One disadvantage is the reduced impedance to the amplifier created by having a plurality of speakers connected to a single amplifier. Connecting too low an impedance (i.e., too many speakers) to an amplifier can overload and possibly damage the amplifier. Another disadvantage is that in large buildings a number of the speakers may be located great distances (e.g., over 100 feet) from the amplifier. Speaker wire has electrical properties of resistance, capacitance and reactance, all of which can impede or alter the transmitted audio signal, thereby causing poor audio output. This is especially true when low voltage or high-current signals are transmitted over great distances of wire.
Another limitation of traditional single amplifier systems is that the amplifier must be able to produce adequate power to operate a plurality of speakers. For large installations, the required high power amplifiers can be particularly expensive because larger and more expensive components must be used to produce the significant amounts of electrical power required. Also, the number of speakers available will be limited by the maximum power output of the central amplifier, making further expansion of the system difficult.
Another disadvantage of traditional single amplifier systems is that each speaker will produce music or a page at approximately the same volume. This may be undesirable in many applications where different audio levels may be required for different areas of a building or facility. For example, a lounge or bar area in a hotel may require music at a higher volume than in the lobby or dining areas. Thus, in such systems it is desirable to provide a means for independently adjusting the volume in each area to compensate for ambient background noise or to set a particular mood or tone suitable for each particular area.
Over the years, various devices have been proposed to provide for localized volume control. One early proposed solution was to provide a multichannel amplifier. A multichannel amplifier has a number of different channels, each having a separate volume control, and which may be used to individually control or adjust the signal strength or power provided to each speaker pair or each speaker in a single channel system. However, multichannel amplifiers are quite costly and the installer or owner is still limited in the number of speakers that the system may operate by the number of channels available on the amplifier and the maximum power output for each channel. Also, the volume control is usually located on the amplifier itself, making localized adjustment of remote speakers inconvenient. Furthermore, using a multichannel amplifier necessitates running wire between each speaker and the amplifier.
A more widely accepted solution is to provide an adjustable autoformer in series with each local speaker pair to selectively attenuate the audio signal provided to the local speakers. For example, U.S. Pat. No. 4,809,339 to Shin et al. describes one type of autoformer suitable for localized audio signal attenuation. Such autoformers typically comprise a plurality of user selectable transformer coils connected between the central amplifier and the local speaker pair. Depending upon the position of a switch or selector knob, more or less reactance and/or resistance is placed in series with the speaker pair to limit or attenuate the amount of power delivered, accordingly.
Although such autoformers provide limited localized volume adjustment of remote speakers they suffer from a number of disadvantages which have yet to be overcome by any known prior art systems. In particular, autoformer volume controls are often inconvenient in that volume control is not continuous. In other words, the volume may only be set at one of several (usually 8 to 12) discrete levels. Thus, a desired volume level located between two autoformer steps may not be achieved. Such volume controls are also undesirable where high-quality or high-fidelity audio sound output is desired. Autoformers have significant reactance to diminish the power delivered to the speakers. Passing an audio signal through an autoformer undesirably distorts the audio signal by introducing capacitance, resistance, and phase distortion at various frequencies in the audio range. In particular, the high and low frequencies of the audio signal are lost or greatly diminished when the signal passes through a transformer. Also, when several autoformers are connected together on a given output channel, the adjustment of one volume control will often result in a change of volume in an adjacent area due to the change in overall load reactance. Thus, such volume controls are not completely independently adjustable.
Other volume controls are known which suffer from similar or other drawbacks. For example, variable resistive ladders, also commonly known as an “L-pad” or rheostat, have also been used to control the volume of the audio from one or more local speaker pairs. The resistive ladder allows the user to selectively increase or decrease the resistance in the line between the speaker and the amplifier to attenuate the audio signal. However, variable resistive ladders suffer from the additional drawback of undesirably generating significant heat and, thus, are not efficient and require extensive cooling or other heat dissipating means.
It is also known to incorporate amplifier/power boosters in a speaker itself. For example, U.S. Pat. No. 4,991,221 to Rush describes an amplifier and a speaker in a single enclosure. However, these types of systems are not well-suited for retrofit installations because the amplifier circuit requires a separate power supply line in addition to the speaker signal lines. Also, the signal quality for speaker/amplifier pairs located at extended distances from the original audio source will still suffer significant degradation due to the resistance, capacitance and inductance of the speaker wire and the relatively low signal input impedance of the amplifier/booster circuit (typically on the order of 100 Ohms). Furthermore, the gain control for such amplifier/booster circuits is typically located behind the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Powered volume control for distributed audio system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Powered volume control for distributed audio system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Powered volume control for distributed audio system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2842956

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.