Motor vehicles – Power – Electric
Reexamination Certificate
2001-10-10
2003-11-04
Johnson, Brian L. (Department: 3611)
Motor vehicles
Power
Electric
C180S065230, C074S473100
Reexamination Certificate
active
06640917
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a power transmission mechanism for transmitting a driving force from at least one of an engine and an electric motor to drive wheels.
2. Description of the Prior Art
Conventionally, a power transmission mechanism of this kind has been proposed e.g. by Japanese Laid-Open Patent Publication (Kokai) No. 11-69509, which includes a multi-stage transmission for connecting an engine to a differential gear, and a clutch for connecting and disconnecting the multi-stage transmission to and from the engine. The multi-stage transmission has an output shaft directly connected to the drive shaft of a motor for driving drive wheels. When the power transmission mechanism performs a shifting operation during running of the vehicle being driven by the engine, the motor drives the output shaft of the multi-stage transmission immediately after disengagement of the clutch, thereby preventing occurrence of a sense of loss of a driving force during running of the vehicle (hereinafter referred to as an “idle running feeling”). Further, the motor performs regeneration during deceleration of the engine. The engine has a crankshaft thereof connected to an auxiliary machine-driving motor via an electromagnetic clutch and a belt transmission mechanism. This auxiliary machine-driving motor drives auxiliary machines, such as an air-conditioner compressor and the like, during stoppage of the engine.
For a hybrid vehicle incorporating the above conventional power transmission mechanism, at least two motors, that is, a motor for driving drive wheels and a motor for driving auxiliary machines are necessitated. In addition thereto, if a starter motor for starting the engine is separately provided, still another electric motor is necessitated, which leads to increased manufacturing costs of the vehicle and makes it difficult to secure a space for installing the mechanism in the vehicle. Further, since the motor for driving the drive wheels has a drive shaft thereof directly connected to the output shaft of the transmission, a relatively large torque is required to drive the drive wheels. This necessarily leads to an increased size of the motor, resulting in further increased manufacturing cost of the mechanism. Further, for the same reason, the drive wheel-driving motor offers an extra rotational resistance to the engine except when the drive wheels are being driven or the regeneration is being carried out. This results in degraded fuel economy.
SUMMARY OF THE INVENTION
It is an object of the invention to provide a power transmission mechanism for an automotive vehicle, which is capable of employing one electric motor as a drive source for driving drive wheels and as a drive source for starting an engine, thereby making it possible to reduce manufacturing costs of the vehicle, and preventing the motor from offering an extra rotational resistance when the drive wheels are being driven by the engine, thereby making it possible to improve fuel economy.
To attain the above object, the present invention provides a power transmission mechanism that connects at least one of an engine and an electric motor to drive wheels, thereby transmitting a driving force from the at least one of the engine and the electric motor to the drive wheels.
The power transmission mechanism according to the invention is characterized by comprising:
a multi-stage transmission including an input shaft connected to the engine and an output shaft connected to the drive wheels, the input shaft and the output shaft having a plurality of change gears arranged thereon which are selectively caused to mesh with each other, thereby transmitting the driving force from the engine to the drive wheels, such that a transmission gear ratio can be stepwise changed and at the same time the input shaft and the output shaft can be disconnected from each other, the multi-stage transmission having an input shaft gear and an output shaft gear fitted on the input shaft and the output shaft, respectively;
a drive shaft driven by the electric motor;
a first gear and a second gear arranged on the drive shaft; and
a switching mechanism for selectively switching a connection mode of the electric motor between an output shaft connection mode in which the electric motor is connected to the output shaft by meshing of the first gear with the output shaft gear, and an input shaft connection mode in which the electric motor is connected to the input shaft by meshing of the second gear with the input shaft gear.
According to this power transmission mechanism, the plurality of change gears selectively mesh with each other, whereby the driving force from the engine is transmitted to the drive wheels according to a transmission gear ratio between the meshed change gears, whereby the hybrid vehicle is driven for traveling. Further, when the connection mode of the electric motor is switched to the output shaft connection mode by the switching mechanism, the electric motor is connected to the output shaft via the first gear and the output shaft gear meshing with each other, and thereby connected to the drive wheels. As a result, the electric motor can be used as a drive source for driving the drive wheels, and even if the power transmission mechanism undergoes a shifting operation during running of the vehicle, the drive wheels can be driven by the electric motor, whereby it becomes possible to prevent occurrence of an idle running feeling. Further, when the connection mode is switched to the input shaft connection mode by the switching mechanism, the electric motor is connected to the input shaft via the second gear and the input shaft gear meshing with each other, and thereby connected to the engine. Consequently, when the output shaft and the input shaft are disconnected from each other during stoppage of the engine, it is possible to crank the engine by the electric motor. This enables the electric motor to be used as a starter motor. As described above, one electric motor can be employed as the drive source for driving drive wheels and as the drive source for cranking the engine, which not only makes it possible to reduce manufacturing costs of the vehicle but also makes it easy to secure a space for mounting the transmission mechanism in a hybrid vehicle. Further, since the electric motor has the first gear or the second gear meshing with the gear of the transmission, by exploiting gear ratios between these gears, the drive wheels can be driven with a torque smaller than that of the conventional electric motor which is directly connected to the output shaft of the transmission. This makes it possible to design the electric motor compact in size, thereby making it easy to secure a mounting space of the transmission mechanism in the vehicle.
Preferably, the input shaft gear is formed by an input shaft integrated gear integrally formed with the input shaft and an input shaft idle gear rotatable about the input shaft, the output shaft gear being integrally formed with the output shaft, the switching mechanism switching the connection mode of the electric motor to the output shaft connection mode by causing the first gear to mesh with the output shaft gear via the input shaft idle gear, and switching the connection mode to the input shaft connection mode by causing the second gear to mesh with the input shaft integrated gear.
According to this preferred embodiment, when the connection mode is switched to the output shaft connection mode by the switching mechanism, the first gear meshes with the output shaft gear via the input shaft idle gear, whereby the drive wheels are driven by the electric motor. Further, in the input shaft connection mode, the second gear meshes with the input shaft integrated gear, whereby the engine is cranked by the electric motor. In this case, generally, the transmission includes idle gears rotatable about the input shaft and the output shaft, and integrated gears as change gears, and hence if such existing change gears are employed as input shaft idle gears, input shaft integ
Honda Giken Kogyo Kabushiki Kaisha
Johnson Brian L.
Shriver J. Allen
LandOfFree
Power transmission mechanism does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Power transmission mechanism, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Power transmission mechanism will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3173975