Power transistor cell

Active solid-state devices (e.g. – transistors – solid-state diode – Integrated circuit structure with electrically isolated... – Including dielectric isolation means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S774000, C257S578000, C257S584000, C257S778000

Reexamination Certificate

active

06548882

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention lies in the field of semiconductors. The present invention relates to power transistor cells, particularly heterojunction bipolar transistor power cells or monolithic microwave integrated circuits (“MMIC”) power cells, which are thermally optimized by air bridges.
Heterojunction bipolar transistors (“HBT”) are required for many applications using the microwave range, e.g., for mobile communication techniques. The particular advantages of HBTs and HBT-MMICs include high current-carrying capacity at high current densities, the high power amplification achieved with the current capacity and density, and the correspondingly high efficiency. These advantages can frequently not be achieved due to poor thermal conductivity of the semiconductor (e.g., gallium arsenide (GaAs)) substrate material. It is, therefore, necessary to ensure sufficient dissipation of the heat produced in the cells. Up to now, various means have been used in order to ensure sufficient heat dissipation. For example, the substrates used can be thinned to a thickness corresponding to the spacing between the heat sources. Metal-filled wells etched into the back of the substrate can be used as heat sinks below the transistors. Gold-plated holes can be used from the back of the substrate to the connection contact surfaces on the top in order to dissipate heat. The transistors can be mounted using the flip-chip construction technique. It is also possible to mount the transistors from the emitter connection surfaces on heat sinks using bumps, and to connect the collector and base regions on the back of the substrate. Appropriate holes are present for the electrical connection. It is also possible to grow the semiconductor layers of the transistor epitaxially on a highly thermally conductive substrate. Use of emitter or base ballast resistors can reduce the adverse effects of heat evolvement on the current stability of the transistor, but such use compromises the radio-frequency performance of the transistor.
Using air bridges provides one possibility for direct heat dissipation through the electrical connections of the transistor regions. Such air bridges are made of electrically and thermally conductive material, preferably of a suitable metal, and connect the contacts of the individual transistors in a cell electrically and thermally to one another in the form of a bridge. Such air bridges are described in the following publications: L. L. Liou et al., “The Effect of Thermal Shunt on the Current Instability of Multiple-Emitter-Finger Heterojunction Bipolar Transistors”, IEEE 1993 Bipolar Circuits and Technology Meeting, pp. 253-256, 1993; B. Bayraktaroglu et al., “Very High-Power-Density CW Operation of GaAs/AlGaAs Microwave Heterojunction Bipolar Transistors”, IEEE Electron Device Letters 14, 493-495 (1993); T. Miura et al., “High Efficiency AlGaAs/GaAs Power HBTs at a Low Supply Voltage for Digital Cellular Phones”, GaAs IC Symposium 1996 Dig., pp. 91-94, 1996; R. Anholt et al., “Decoupled Electrical/Thermal Modeling of AlGaAs/GaAs Heterojunction Bipolar Transistors”, IEEE GaAs IC Symposium Dig. 1996, pp. 167-170, 1996. With these HBTs, the emitter fingers are connected to one another using a respective air bridge. Connection of the collector metal connections of the individual HBT subcells through air bridges is described, for example, in the publication by H. F. Chau et al., titled “High-Power, High-Efficiency K-Band AlGaAs/GaAs Heterojunction Bipolar Transistors”, IEEE GaAs IC Symposium 1996 Dig., pp. 95-98, 1996. A plurality of the measures described can be combined.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a power transistor cell that overcomes the hereinafore-mentioned disadvantages of the heretofore-known devices of this general type and that is improved further with respect to thermal optimization.
With the foregoing and other objects in view, there is provided, in accordance with the invention, a power transistor cell, including an air bridge, and a plurality of individual transistors each having at least one separate connection contact, each of the at least one separate connection contact being thermally conductively connected to one another through the air bridge forming air bridge connections, the air bridge connections defining a contact plane, a surface of the contact plane that contains each connection path between two of the air bridge connections defining a convex region, the air bridge formed to have, in the contact plane, dimensions that exceed a smallest convex region containing all of the air bridge connections in all directions of the air bridge.
With the power transistor cell according to the invention, an air bridge is used that has a considerable extent not only in the direction of a series of individual transistors oriented in a row, but that also has a considerable extent perpendicularly to such direction in the plane of the substrate surface. Such an air bridge can, firstly, be produced to be particularly thick and, therefore, highly thermally conductive, and, secondly, can be provided with good heat dissipation or a heat sink, using additional thermal contacts on connection contact surfaces that are dimensioned to be relatively large or on the substrate surface. In the publications indicated, air bridges are described that are used to connect the emitter fingers, i.e., the finger-shaped emitter contacts, to one another using air bridges whose width is no larger than the length of the emitter fingers. With the normally short emitter lengths of between 20 &mgr;m and 30 &mgr;m, the transportation of heat in such essentially one-dimensional air bridges is effective in only one direction along the bridge. The relatively small lateral extent of the air bridge affords a correspondingly small volume to take up the heat produced (low thermal capacitance); the total heat dissipation to the chip surface occurs only through the two outermost transistor cells. In contrast to this, the air bridge present in the power transistor cell according to the invention has as large a surface as possible and, therefore, has a high thermal capacitance. By virtue of the air bridge also having a considerable extent in the longitudinal direction of the emitter fingers, it is also possible to support the air bridge by thermally conductive contact pillars or supports mounted on the chip top or on contact surfaces and, at the same time, to dissipate the heat into the substrate or into metal layers applied thereon. It is also possible to route such thermally conductive connections through via holes in the substrate onto the back of the substrate. The air bridge present in the power transistor cell according to the invention is called a two-dimensional air bridge below, in order to distinguish it from the air bridges described in previous publications.
In accordance with another feature of the invention, the at least one separate connection contact is elongate and has a length, and the air bridge protrudes beyond the at least one separate connection contact by at least 15% of the length of the at least one separate connection contact in a longitudinal direction of the at least one separate connection contact.
In accordance with a further feature of the invention, the at least one separate connection contact is elongate and has a length, and the air bridge protrudes beyond the at least one separate connection contact by at least 30% of the length of the at least one separate connection contact in a longitudinal direction of the at least one separate connection contact.
In accordance with an added feature of the invention, the at least one separate connection contact is elongate and has a length, and the air bridge protrudes beyond the at least one separate connection contact by at least 100% of the length of the at least one separate connection contact in a longitudinal direction of the at least one separate connection contact.
In accordance with an additional feature of the invention, the air bridge has a surface an

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Power transistor cell does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Power transistor cell, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Power transistor cell will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3037502

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.