Power-transducer/conversion system and related methodology

Prime-mover dynamo plants – Electric control – Fluid-current motors

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C290S043000, C290S054000, C290S055000

Reexamination Certificate

active

06417578

ABSTRACT:

FIELD, BACKGROUND AND SUMMARY OF THE INVENTION
The present invention involves and discloses several modifications/versions of systems (and related methods) that transduce, or convert, power in a moving fluid (i.e., kinetic, fluid-flow power, such as wind power and water power) to electrical power, or vice versa.
A major field of use for the special features of, and contributions made by, this invention is that field which involves the conversion of wind power to electrical power. Accordingly, and while recognizing that there are several fields particularly suited for use of the present invention, we make a principal description of the invention hereinbelow in the field of wind-to-electrical-power activity. We also discuss briefly below the somewhat broader notion of the conversion of fluid-flow power to electrical power. Thus, a preferred way (and certain variations thereof) for implementing and practicing the system and methodology of this invention is(are) disclosed specifically in relation to wind-turbine, electrical-power generation—a realm of enthusiastic, “alternative-power” activity, wherein the various unique characteristics of the invention have been found to offer particular utility.
Typically, aerodynamic, wind-driven, rotor-operated, electrical generator systems collect and convert variable-speed wind power to electrical power by gathering fluid-motion energy, via an aerodynamic rotor which is positioned in a selected wind path, and by coupling the fluid-flow energy which is extracted and collected by that rotor (and its rotation) to the rotor in an electrical generator. Normally, the resulting electrical power output (typically AC) created by such a system, wherein the aerodynamic rotor is usually a propeller-type (also referred to as a fan-blade-type) rotor, is coupled, ultimately, to a conventional, commercial electrical utility grid which, possessing certain well-known constraints, requires that electrical power delivered to and handled by it have a certain, fairly rigorously maintained “electrical quality”. Specifically, such a grid normally imposes a “quality” constraint which requires that “received” power be delivered and maintained, at or very close to, a prescribed AC voltage, and as well, at a prescribed, and quite rigidly anchored, operating frequency (60-Hz is normal).
Accordingly, and to achieve successfully such required “grid constraints”, prior art systems typically include a certain, necessary level of structural complexity—complexity which is “operationally disposed” intermediate the contributing aerodynamic rotor and the grid. High on the list of culprits to be dealt with in a system of this type is the fact that power derived from the usual flow of wind is unpredictable, and highly erratic, and also widely variable, because of wind-speed variations. If left unaddressed, such power would not be acceptably deliverable to such a grid.
Thus, and traditionally in many prior art renditions of such a system, there is not a direct-drive condition existing between the wind-driven rotor and the rotor in an electrical generator. Rather, normally interposed (as a connective “chain”) the usual, fan-like, aerodynamic rotor and the grid is a speed-increaser gear-box, or the like, which has its input side coupled to the aerodynamic rotor, and its output side coupled to the rotor in a conventional electrical generator (any type). This gear-box serves to make the output operating electrical frequency of the generator relatively close to the grid operating frequency. Additionally, there is usually also often employed an appropriate category of electrical control interface circuit which couples, and which is interposed, the output of the generator and the input structure of the grid. This circuit interface cooperates in helping to furish the grid with the proper electrical-power quality.
Another type of prior art system recognizes that, in certain instances, there are advantages and efficiencies to be gained where there is a direct-drive connection in existence between the usual fan-like aerodynamic rotor and the rotor in an electrical generator. Here too, it is usually normal that the output of such a generator is coupled to a grid via an electrical control interface circuit of the type just mentioned generally above.
In each of these two conventional kinds of systems, the usual derivation of power by a propeller-type aerodynamic rotor, and the delivery of such propeller-derived power via a relatively small-diameter shaft which is connected to such a rotor, introduce inefficiencies and resulting power losses which one would like to overcome. While there are many sources of such inefficiencies and losses, prominent on the list of contributors are shaft-bearing losses, and gear-box loss.
In this prior-art setting, the present invention provides a novel, significantly improved, direct-drive-type, power-conversion (transduction) system, and a related methodology, which offer a number of significant improvements over prior art systems. These important improvements reside typically, inter alia, in the areas of (1) operational efficiency, (2) simplicity of manufacturing, and (3) reduction of system vulnerabilities due to the normal (and occasionally extreme) fluctuations in fluid (wind) velocity.
In the arena of converting fluid-flow power to electrical power, the invention has important applicability especially in relation (a) to fan-like aerodynamic rotors, (b) to hoop-shaped, or squirrel-cage-like (rotary-spool-like), aerodynamic rotors (and rotor sections), and (c) to various hybrids of (a) and (b) which have both squirrel-cage-like and fan-like characteristics. These three general kinds of rotors are also referred to herein, in order to convey a fuller understanding of the technical reach of this invention, as fluid-flow-dynamic, fluid-foil structures. The term “squirrel-cage” is a term with widely known familiarity in the art. These “rotors” are referred to hereinalso, variously, as fluid-responsive assemblies, as fluid-foil substructures, as air-foil assemblies (and spools), as fluid-dynamic rotors and foil assemblies, as wind-responsive portions of revolution structures, as wind-power-responsive units, and as wind-responsive instrumentalities. More about such rotors will follow in the discussion below. As one will observe from a reading of the discussion below, even various conventional rotors can be employed.
Importantly, the invention also has what might be thought of as reverse-performance applications—such applications relating to systems and methods that convert electrical power to fluid-flow power, as, for example, is done with fans, pumps, air-thrust engines, etc.
Accordingly, and referring back to certain earlier discussions herein, there are known in the prior art various power-conversion systems that, for example, transform power which is resident in a flowing fluid (the kinetic-power side of such a system) to (or from, when the reverse-conversion direction is thought about) electrical power (the electrical-power side of such a system). Examples of such systems—i.e., wind-based systems—have been discussed generally above. Analogous systems, of course, are known involving other types of fluids, such as water.
As is somewhat suggested by the discussion areas mentioned above, everpresent goals—goals that are aimed at designing improved, fluid-flow, power-conversion systems—include, inter alia, (1) increasing efficiency, in terms of power yield, (2) achieving maximum design and construction simplicity, and (3) holding system materials, building activities, and installation and maintenance, costs to a minimum. For power-conversion systems that must work well with the derivation of electrical power from a variable fluid-flow velocity, such as is usually present with wind, another critical design objective, certainly, is to develop, and to achieve (commercially successfully), mechanisms that accommodate (by “evenizing”) drastic, as well as ever-present-minor, changes in such velocity. How the present invention addresses these matters will become apparent sho

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Power-transducer/conversion system and related methodology does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Power-transducer/conversion system and related methodology, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Power-transducer/conversion system and related methodology will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2903207

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.