Optical communications – Transmitter – Including specific optical elements
Reexamination Certificate
2008-04-03
2009-11-10
Pascal, Leslie (Department: 2613)
Optical communications
Transmitter
Including specific optical elements
C398S185000
Reexamination Certificate
active
07616902
ABSTRACT:
This invention generally relates to an optical filter for a fiber optic communication system. An optical filter may be used, following a directly modulated laser source, and converts a partially frequency modulated signal into a substantially amplitude modulated signal. The optical filter may compensate for the dispersion in the fiber optic transmission medium and may also lock the wavelength of the laser source.
REFERENCES:
patent: 3324295 (1967-06-01), Harris
patent: 3999105 (1976-12-01), Archey et al.
patent: 4038600 (1977-07-01), Thomas et al.
patent: 4561119 (1985-12-01), Epworth
patent: 4805235 (1989-02-01), Henmi
patent: 4841519 (1989-06-01), Nishio
patent: 5293545 (1994-03-01), Huber
patent: 5325378 (1994-06-01), Zorabedian
patent: 5371625 (1994-12-01), Wedding et al.
patent: 5412474 (1995-05-01), Reasenberg et al.
patent: 5416629 (1995-05-01), Huber
patent: 5465264 (1995-11-01), Buhler et al.
patent: 5477368 (1995-12-01), Eskildsen et al.
patent: 5550667 (1996-08-01), Krimmel et al.
patent: 5592327 (1997-01-01), Gabl et al.
patent: 5737104 (1998-04-01), Lee et al.
patent: 5777773 (1998-07-01), Epworth et al.
patent: 5805235 (1998-09-01), Bedard
patent: 5856980 (1999-01-01), Doyle et al.
patent: 5920416 (1999-07-01), Beylat et al.
patent: 5953139 (1999-09-01), Nemecek et al.
patent: 5953361 (1999-09-01), Borchert et al.
patent: 5974209 (1999-10-01), Cho et al.
patent: 6081361 (2000-06-01), Adams et al.
patent: 6096496 (2000-08-01), Frankel
patent: 6104851 (2000-08-01), Mahgerefteh
patent: 6115403 (2000-09-01), Brenner et al.
patent: 6222861 (2001-04-01), Kuo et al.
patent: 6271959 (2001-08-01), Kim et al.
patent: 6298186 (2001-10-01), He
patent: 6331991 (2001-12-01), Mahgerefteh
patent: 6353623 (2002-03-01), Munks et al.
patent: 6359716 (2002-03-01), Taylor
patent: 6421151 (2002-07-01), Berger et al.
patent: 6473214 (2002-10-01), Roberts et al.
patent: 6506342 (2003-01-01), Frankel
patent: 6563623 (2003-05-01), Penninckx et al.
patent: 6577013 (2003-06-01), Glenn et al.
patent: 6618513 (2003-09-01), Evankow, Jr.
patent: 6650667 (2003-11-01), Nasu et al.
patent: 6654564 (2003-11-01), Colbourne et al.
patent: 6658031 (2003-12-01), Tuganov et al.
patent: 6665351 (2003-12-01), Hedberg et al.
patent: 6687278 (2004-02-01), Mason et al.
patent: 6748133 (2004-06-01), Liu et al.
patent: 6778307 (2004-08-01), Clark
patent: 6810047 (2004-10-01), Oh et al.
patent: 6834134 (2004-12-01), Brennan et al.
patent: 6836487 (2004-12-01), Farmer et al.
patent: 6847758 (2005-01-01), Watanabe
patent: 6943951 (2005-09-01), Kikuchi et al.
patent: 6947206 (2005-09-01), Tsadka et al.
patent: 6963685 (2005-11-01), Mahgerefteh et al.
patent: 7013090 (2006-03-01), Adachi et al.
patent: 7054538 (2006-05-01), Mahgerefteh et al.
patent: 7076170 (2006-07-01), Choa
patent: 7123846 (2006-10-01), Tateyama et al.
patent: 7164865 (2007-01-01), Tatsuno et al.
patent: 7263291 (2007-08-01), Mahgerefteh et al.
patent: 7280721 (2007-10-01), McCallion et al.
patent: 2002/0044738 (2002-04-01), Jablonski et al.
patent: 2002/0063930 (2002-05-01), Blauvelt
patent: 2002/0154372 (2002-10-01), Chung et al.
patent: 2002/0159490 (2002-10-01), Karwacki
patent: 2002/0176659 (2002-11-01), Lei et al.
patent: 2003/0002099 (2003-01-01), Sayyah et al.
patent: 2003/0002120 (2003-01-01), Choa
patent: 2003/0067952 (2003-04-01), Tsukiji et al.
patent: 2003/0099018 (2003-05-01), Singh et al.
patent: 2003/0147114 (2003-08-01), Kang et al.
patent: 2003/0193974 (2003-10-01), Frankel et al.
patent: 2003/0210912 (2003-11-01), Leuthold et al.
patent: 2004/0008933 (2004-01-01), Mahgerefteh et al.
patent: 2004/0008937 (2004-01-01), Mahgerefteh et al.
patent: 2004/0036943 (2004-02-01), Freund et al.
patent: 2004/0076199 (2004-04-01), Wipiejewski et al.
patent: 2004/0081386 (2004-04-01), Morse et al.
patent: 2004/0096221 (2004-05-01), Mahgerefteh et al.
patent: 2004/0218890 (2004-11-01), Mahgerefteh et al.
patent: 2005/0100345 (2005-05-01), Welch et al.
patent: 2005/0111852 (2005-05-01), Mahgerefteh et al.
patent: 2005/0175356 (2005-08-01), McCallion et al.
patent: 2005/0206989 (2005-09-01), Marsh
patent: 2005/0271394 (2005-12-01), Whiteaway et al.
patent: 2005/0286829 (2005-12-01), Mahgerefteh et al.
patent: 2006/0002718 (2006-01-01), Matsui et al.
patent: 2006/0008272 (2006-01-01), Abeles
patent: 2006/0018666 (2006-01-01), Matsui et al.
patent: 2006/0029358 (2006-02-01), Mahgerefteh et al.
patent: 2006/0029396 (2006-02-01), Mahgerefteh et al.
patent: 2006/0029397 (2006-02-01), Mahgerefteh et al.
patent: 2006/0193636 (2006-08-01), Katagiri et al.
patent: 2006/0228120 (2006-10-01), McCallion et al.
patent: 2006/0233556 (2006-10-01), Mahgerefteh et al.
patent: 2006/0274993 (2006-12-01), Mahgerefteh et al.
patent: 2 107 147 (1983-04-01), None
patent: 62-189832 (1987-08-01), None
patent: 11-031859 (1999-02-01), None
patent: 2000-105313 (2000-04-01), None
patent: 2001-291928 (2001-10-01), None
patent: 2001-320328 (2001-11-01), None
patent: 2002-243935 (2002-08-01), None
patent: 2002-267834 (2002-09-01), None
patent: 2002-267998 (2002-09-01), None
patent: 9905804 (1999-02-01), None
patent: 0104999 (2001-01-01), None
patent: 0117076 (2001-03-01), None
patent: 0118919 (2001-03-01), None
patent: 03005512 (2003-01-01), None
Alexander et al., Passive Equalization of Semiconductor Diode Laser Frequency Modulation, Journal of Lightwave Technology, Jan. 1989, 11-23, vol. 7, No. 1.
Binder, J. et al., 10 Gbit/s-Dispersion Optimized Transmission at 1.55 um Wavelength on Standard Single Mode Fiber, IEEE Photonics Technology Letters, Apr. 1994, 558-560, vol. 6, No. 4.
Hyryniewicz, J.V., et al., Higher Order Filter Response in Coupled MicroRing Resonators, IEEE Photonics Technology Letters, Mar. 2000, 320-322, vol. 12, No. 3.
Koch, T. L. et al., Nature of Wavelength Chirping in Directly Modulated Semiconductor Lasers, Electronics Letters, Dec. 6, 1984, 1038-1039, vol. 20, No. 25/26.
Kurtzke, C., et al., Impact of Residual Amplitude Modulation on the Performance of Dispersion-Supported and Dispersion-Mediated Nonlinearity-Enhanced Transmission, Electronics Letters, Jun. 9, 1994, 988, vol. 30, No. 12.
Li, Yuan P., et al., Chapter 8: Silicon Optical Bench Waveguide Technology, Optical Fiber Communications, 1997, 319-370, vol. 111B, Lucent Technologies, New York.
Little, Brent E., Advances in Microring Resonators, Integrated Photonics Research Conference 2003.
Mohrdiek, S. et al., 10-Gb/s Standard Fiber Transmission Using Directly Modulated 1.55-um Quantum-Well DFB Lasers, IEEE Photonics Technology Letters, Nov. 1995, 1357-1359, vol. 7, No. 11.
Morton, P.A. et al., “38.5km error free transmission at 10Gbit/s in standard fibre using a low chirp, spectrally filtered, directly modulated 1.55um DFB laser”, Electronics Letters, Feb. 13, 1997, vol. 33(4).
Prokais, John G., Digital Communications, 2001, 202-207, Fourth Edition, McGraw Hill, New York.
Rasmussen, C.J., et al., Optimum Amplitude and Frequency-Modulation in an Optical Communication System Based on Dispersion Supported Transmission, Electronics Letters, Apr. 27, 1995, 746, vol. 31, No. 9.
Shalom, Hamutal et al., On the Various Time Constants of Wavelength Changes of a DFB Laser Under Direct Modulation, IEEE Journal of Quantum Electronics, Oct. 1998, pp. 1816-1822, vol. 34, No. 10.
Wedding, B., Analysis of fibre transfer function and determination of receiver frequency response for dispersion supported transmission, Electronics Letters, Jan. 6, 1994, 58-59, vol. 30, No. 1.
Wedding, B., et al., 10-Gb/s Optical Transmission up to 253 km Via Standard Single-Mode Fiber Using the Method of Dispersion-Supported Transmission, Journal of Lightwave Technology, Oct. 1994, 1720, vol. 12, No. 10.
Yu, et al., Optimization of the Frequency Response of a Semiconductor Optical Amplifier Wavelength Converter Using a Fiber Bragg Grating, Journal of Lightwave Technology, Feb. 1999, 308-315, vol. 17, No. 2.
Corvini, P.J. et al., Computer Simulation of High-Bit-Rate Optical Fiber Transmission Using Single-Frequency Lasers, Journal of Lightwave Technology, Nov. 1987, 1591-1596, vol. LT-5, No. 11.
Lee, Chang-Hee et al.,
Mahgerefteh Daniel
Tayebati Parviz
Finisar Corporation
Pascal Leslie
Workman Nydegger
LandOfFree
Power source for a dispersion compensation fiber optic system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Power source for a dispersion compensation fiber optic system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Power source for a dispersion compensation fiber optic system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-4054696