Power slider window assembly

Movable or removable closures – With means mounting closure for reciprocation – Horizontally sliding sashless-type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C049S121000

Reexamination Certificate

active

06591552

ABSTRACT:

TECHNICAL FIELD AND BACKGROUND OF THE INVENTION
The present invention relates to a window assembly and, more particularly, to a modular sliding window assembly for vehicles.
Sliding window assemblies are often used, for example, in a rear cab opening of a truck. Typically, such sliding window assemblies include a frame with one or more fixed panes and one or more sliding panes which are either manually operated or operated using electro-mechanical systems.
The trend in vehicle windows is to form a pre-assembled modular window assembly which can be installed as a single component. In addition, more recently, modular window assemblies are preferably flush mounted, with the window assembly retained by studs or clips that are molded or otherwise attached to the gasket. As a result, the gasket not only provides a seal for the window assembly but now integrates the window pane or panes to form a structural self-contained, pre-assembled unit that is easier to handle during shipping and installation.
In sliding window assemblies, flush mounting has posed several problems. Because the electro-mechanical systems used to move the sliding window panes typically entail complicated drive arrangements and often require large motors to move the sliding panes, these arrangements add significant weight to the window assembly. Furthermore, these drive arrangements often consume a significant amount of space. Therefore, for these and various other reasons, these various drive mechanisms have not heretofore been successfully integrated into flush-mounted modular window assemblies.
Another problem with some of the conventional sliding window designs is that the weight of the sliding window panes creates significant friction between the sliding panes and the tracks which are used to support the panes. This increases the power requirement for the drive mechanism and, hence, the size of the motor. In addition, the increased friction can result in binding or chattering of the sliding panes which can damage the drive assembly.
Consequently, there is a need for a modular sliding window assembly which can be flush mounted within a vehicle while incorporating a drive mechanism that permits one or more sliding panes of the window assembly to be selectively moved between open and closed positions. In addition, there is a need for a sliding modular window assembly which provides a smooth sliding action of the sliding window panes, which reduces the power requirements of the drive mechanism.
SUMMARY OF THE INVENTION
Accordingly, a vehicular sliding window assembly of the present invention provides a modular assembly which can be installed in a vehicle, such as a rear cab opening, as a single unit. The window assembly includes one or more sliding window panes which move between open and closed positions. The sliding window panes are preferably driven by a drive assembly which needs only a low power motor to move the respective sliding window panes. At least a portion of the drive assembly is self-contained and supported in a support rail which is mounted to a polymeric member formed around perimeter portions of the fixed window panes. In this manner, the window assembly can be pre-assembled with the drive assembly prior to installation of the window assembly in the vehicle so that window assembly can be quickly and easily mounted during the vehicle assembly process. Furthermore, since at least a portion of the drive assembly is self-contained and supported in the support rail, the drive assembly can be post-attached to the window assembly after the window assembly is installed in the vehicle, which permits retro-fitting of the drive assembly at the dealership.
In one form of the invention, a vehicular sliding window assembly includes first and second fixed window panes, which are spaced apart to define an opening therebetween. The window assembly further includes at least one guide track and at least one sliding window pane positioned in the guide track. The sliding window pane is positionable along the guide track between an open position and a closed position wherein the sliding window pane closes the opening. A support rail supports the sliding window pane whereby the weight of the sliding window pane is borne by the support rail and not by the guide track to thereby reduce the friction between the sliding window pane and the guide track.
In one aspect, the sliding window pane includes a carrier. The support rail supports the carrier thereby supporting the sliding window pane. Preferably, the carrier is attached to the sliding window pane, such as by an adhesive. In further aspects, the support rail comprises a channel-shaped support rail having spaced flanges, with the carrier supported between the spaced flanges.
In another aspect, the sliding window assembly further includes a drive assembly. The drive assembly includes a cable system, with the cable system drivingly coupled to the sliding window pane. Preferably, at least a portion of the cable system is supported in the support rail.
In further aspects, the sliding window assembly includes a second sliding window pane which is positioned in the guide track, with the first and second sliding window panes moving toward each other to close the opening and away from each other to open the opening.
In another form of the invention, a vehicular sliding window assembly includes first and second fixed window panes which are spaced apart to define an opening therebetween. The window assembly further includes upper and lower guide tracks to provide guides for the first and second sliding window panes. The sliding window panes are positionable between a closed position wherein the sliding window panes are in an abutting relationship to thereby close the opening and a plurality of open positions wherein the sliding window panes are spaced apart. A drive assembly is drivingly coupled to the sliding window panes and selectively moves the sliding window panes along the guide tracks between the open and closed positions. A support rail supports at least a portion of the drive assembly.
In one aspect, the support rail supports the first and second sliding window panes above an upwardly facing surface of the lower guide track to reduce the friction between the sliding window panes and the lower guide track. In another aspect, the support rail supports the sliding window panes below a downwardly facing surface of the upper track and above the upwardly facing surface of the lower track to reduce the friction between the sliding window panes and the upper and lower tracks which results a smooth sliding action when the sliding window panes are moved along the upper and lower tracks.
In further aspects, each sliding window pane includes a carrier, with the support rail supporting the carrier to thereby support the sliding window panes.
In other aspects, the window assembly further includes a polymeric member, which contacts at least portions of the perimeter of the fixed window panes. Preferably, the support rail is mounted to the polymeric member. In further aspects, the polymeric member includes a support mount, with the support rail mounted to the support mount. In one form, the support mount projects from the polymeric member. In another form, the support mount is fully encapsulated in the polymeric member.
According to another aspect, the drive assembly includes a cable system, with the cable system drivingly coupled to the sliding window panes. At least a portion of the cable system is supported in the support rail. In further aspects, the cable system includes at least one cable section, more preferably, a plurality of cable sections, and most preferably at least one cable guide and at least three cable sections. One of the cable sections is for drivingly coupling to a motor and cable drum assembly and to the second sliding window pane. Another cable section is drivingly coupled to the second sliding window pane and extends around the cable guide to drivingly couple to the first sliding window pane. A third section is for drivingly coupling to the motor and cable drum

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Power slider window assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Power slider window assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Power slider window assembly will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3102056

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.