Power setting in CDMA systems employing discontinuous...

Multiplex communications – Communication over free space – Repeater

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S320000, C370S335000, C370S441000, C455S069000, C455S522000

Reexamination Certificate

active

06512750

ABSTRACT:

BACKGROUND
The present invention relates to the use of Code Division Multiple Access (CDMA) communications techniques in cellular radio telephone communication systems, and more particularly, to methods and systems related to power control in systems using discontinuous Direct Sequence-Code Division Multiple Access (DS-CDMA) transmissions.
DS-CDMA is one type of spread spectrum communication. Spread spectrum communications have been in existence since the days of World War II. Early applications were predominantly military oriented. However, today there has been an increasing interest in using spread spectrum systems in commercial applications. Some examples include digital cellular radio, land mobile radio, satellite systems and indoor and outdoor personal communication networks referred to herein collectively as cellular systems.
Currently, channel access in cellular systems is achieved using Frequency Division Multiple Access (FDMA) and Time Division Multiple Access (TDMA) methods. In FDMA, a communication channel is a single radio frequency band into which a signal's transmission power is concentrated. Interference with adjacent channels is limited by the use of band pass filters which pass substantial signal energy only within the specified frequency band. Thus, with each channel being assigned a different frequency band, system capacity is limited by the number of available frequency bands as well as by limitations imposed by frequency reuse.
In TDMA systems which do not employ frequency hopping, a channel consists of a time slot in a periodic train of time intervals over the same frequency band. Each period of time slots is called a frame. A given signal's energy is confined to one of these time slots. Adjacent channel interference is limited by the use of a time gate or other synchronization element that passes signal energy received at the proper time. Thus, the problem of interference from different relative signal strength levels is reduced.
With FDMA or TDMA systems (or hybrid FDMA/TDMA systems), one goal is to insure that two potentially interfering signals do not occupy the same frequency at the same time. In contrast, Code Division Multiple Access (CDMA) is an access technique which uses spread spectrum modulation to allow signals to overlap in both time and frequency. There are a number of potential advantages associated with CDMA communication techniques. The capacity limits of CDMA-based cellular systems are projected to be higher than that of existing analog technology as a result of the properties of wideband CDMA systems, such as improved interference diversity and voice activity gating.
In a direct sequence (DS) CDMA system the symbol stream to be transmitted (i.e., a symbol stream which has undergone channel encoding etc.) is impressed upon a much higher rate data stream known as a signature sequence. Typically, the signature sequence data (commonly referred to as “chips”) are binary or quaternary, providing a chip stream which is generated at a rate which is commonly referred to as the “chip rate”. One way to generate this signature sequence is with a pseudo-noise (PN) process that appears random, but can be replicated by an authorized receiver. The symbol stream and the signature sequence stream can be combined by multiplying the two streams together. This combination of the signature sequence stream with the symbol stream is called spreading the symbol stream signal. Each symbol stream or channel is typically allocated a unique spreading code. The ratio between the chip rate and the symbol rate is called the spreading ratio.
A plurality of spread signals modulate a radio frequency carrier, for example by quadrature phase shift keying (QPSK), and are jointly received as a composite signal at a receiver. Each of the spread signals overlaps all of the other spread signals, as well as noise-related signals, in both frequency and time. If the receiver is authorized, then the composite signal is correlated with one of the unique codes, and the corresponding signal can be isolated and decoded.
For future cellular systems, the use of hierarchical cell structures will prove valuable in even further increasing system capacity. In hierarchical cell structures, smaller cells or micro cells exist within a larger cell or macro cell. For instance, micro cell base stations can be placed at a lamp post level along urban streets to handle the increased traffic level in congested areas. Each micro cell might cover several blocks of a street or a tunnel, for instance while a macro cell might cover a 3-5 Km radius. Even in CDMA systems, it is likely that the different types of cells (macro and micro) will operate at different frequencies so as to increase the capacity of the overall system. See, H. Eriksson et al., “Multiple Access Options For Cellular Based Personal Comm.,”
Proc.
43
rd Vehic. Tech. Soc. Conf.,
Secaucus, 1993. Reliable handover procedures must be supported between the different cell types, and thus between different frequencies so that mobile stations which move between cells will have continued support of their connections.
There are several conventional techniques for determining which new code, frequency and cell should be selected among plural handover candidates. For example, the mobile station can aid in the determination of the best handover candidate (and associated new base station) to which communications are to be transferred. This process, typically referred to as mobile assisted handover (MAHO), involves the mobile station periodically (or on demand) making measurements on each of several candidate frequencies to help determine a best handover candidate based on some predetermined selection criteria (e.g., strongest received RSSI, best BER, etc.). In TDMA systems, for example, the mobile station can be directed to scan a list of candidate frequencies during idle time slot(s), so that the system will determine a reliable handover candidate if the signal quality on its current link degrades beneath a predetermined quality threshold.
In conventional CDMA systems, however, the mobile station is continuously occupied with receiving information from the network. In fact, CDMA mobile stations normally continuously receive and transmit in both uplink and downlink directions. Unlike TDMA, there are no idle time slots available to switch to other carrier frequencies, which creates a problem when considering how to determine whether handover to a given base station on a given frequency is appropriate at a particular instant. Since the mobile station cannot provide any inter-frequency measurements to a handover evaluation algorithm operating either in the network or the mobile station, the handover decision will be made without full knowledge of the interference situation experienced by the mobile station, and therefore can be unreliable.
One possible solution to this problem is the provision of an additional receiver in the mobile unit which can be used to take measurements on candidate frequencies. Another possibility is to use a wideband receiver which is capable of simultaneously receiving and demodulating several carrier frequencies. However, these solutions add complexity and expense to the mobile unit.
Another solution is presented in U.S. Pat. No. 5,533,014 to Willars et al.,the disclosure of which is expressly incorporated here by reference, wherein this problem is addressed by introducing discontinuous transmission into CDMA communications techniques. In this patent, for example, a compressed transmission mode is provided using a lower spreading ratio (i.e., by decreasing the number of chips per symbol) such that with a fixed chip rate the spread information only fills a part of a frame. This leaves part of each frame, referred to therein as an idle part, during which the receiver can perform other functions, such as the evaluation of candidate cells at other frequencies for purposes of handover.
Various other mechanisms available for creating an idle part within a CDMA frame (which technique is sometimes referred to as “slotted m

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Power setting in CDMA systems employing discontinuous... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Power setting in CDMA systems employing discontinuous..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Power setting in CDMA systems employing discontinuous... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3008636

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.