Power-saving mode for portable communication devices

Telecommunications – Transmitter and receiver at same station – Radiotelephone equipment detail

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S556200, C455S343200

Reexamination Certificate

active

06532375

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to portable, battery-powered communication devices such as cellular telephones and pagers. More particularly, it relates to a portable communication device incorporating both a cellular telephone and a pager. It also relates to methods and devices for extending battery life during operation of such devices.
2. Description of Related Art
During the past two decades, rapid proliferation of portable communication devices has been nothing short of amazing. During the past 15 years, cellular telephones have progressed from being a novelty to a ubiquitous appliance. The use of pager devices has also become widespread.
The following equipment examples are illustrative of the current state of this burgeoning industry. In the latter half of 1996, Nokia, a manufacturer of communications equipment, announced the introduction of the Nokia 9000 Communicator, a portable communication system that combines digital, voice and data services, as well as personal organizer functions in a single, compact unit. The Nokia device incorporates processing capability provided by an Intel 24 MHz 386 microprocessor, flash memory, and a powerful, memory-efficient graphical user interface (GUI) operating system named GEOS developed by Geoworks, Inc. The Nokia communication system is designed to work in combination with a hand-held computer screen produced by Reflection Technology, Inc., a manufacturer of virtual display technology and wireless messaging equipment. The computer screen, which displays a full 12-inch page of graphics and text, connects with cellular or land phone lines to allow a mobile user to receive, read, store and send faxes without the use of a laptop computer. The device features a virtual keyboard with which the user may create memos and respond to faxes, and a full-screen menu that allows users to choose certain functions, such as view, send, enlarge and reduce. The device can store approximately 25 pages and has a built-in directory that stores more than 100 names and fax numbers for use with the unit's auto-dial feature.
In the case of a portable combination electronic device, one of the constituent devices typically consumes more power than the other during operation. A combination portable communication device incorporating both a cellular telephone and a pager is one such combination device. Power consumption of the cellular phone, particularly in the transceive mode, is typically several orders of magnitude greater than that of a pager device. For example, a typical cellular telephone with a 400 mAh nickel-cadmium battery will operate in the transmit-receive mode for only about 70 minutes before the battery must be charged or replaced. Standby time for the same battery is about 17 hours. Most of the power consumed during standby mode is required to operate the periodic query function which maintains cellular phone orientation with respect to the cellular grid. Pagers, on the other hand, require far less power to operate because they are, in the most basic mode of operation, merely radio receivers. Thus, they are generally endowed with much greater battery life. A standard beeper powered by a single AA-size alkaline power cell will operate continuously for four to six weeks if only the beeper notification mode is employed. Operating the same pager in the vibrator notification mode can halve battery life.
When a pager device and a cellular phone are combined into a single unit having a single battery power supply, maximum useful operating life of the pager between battery charges is largely dictated by battery life of the cellular telephone operating in standby mode. When the transmit-receive mode is employed, operating life of the pager on a single charge can be cut dramatically. This is particularly true where the user has little control over the number of incoming calls. Thus, even though the pager function may be more critical to the user, the pager function may be rendered useless by incoming telephone calls which drain the battery to the point where both the pager function and the telephone function are inoperative due to battery discharge below the critical operating voltage.
FIG. 1
depicts a circuit which has heretofore been utilized to control one of two or more electronic devices powered by a single depletable power supply where the device to be controlled requires a clock signal input for operation. A precision reference voltage VR is supplied to the inverting terminal (i.e., the “−” terminal) of comparator
102
, and a sample voltage VS (taken from a voltage divider
101
constructed from resistors R
1
and R
2
) is supplied to the non-inverting terminal (i.e., the “+” terminal) of comparator
102
. The values of resistors R
1
and R
2
are selected so that the sample voltage VS is greater than VR, with the difference between VS and VR corresponding to the voltage range selected for continuous operation of an electronic device. The intermediate output VO I from comparator
102
is fed to one of a pair of inputs to NAND gate
103
. A clock signal CLK is fed to the other input. As long as VS is greater than VR, the current path through resistor R
3
will maintain VO
1
high, and an inverted clock signal CLK* will be passed through NAND gate
103
. When VS drops below VR, comparator
102
will pull VO
1
low. The signal CLK* is utilized to operate a second device. In order to prevent oscillations about the set turnoff point, hysteresis is provided at the output via a feedback path
104
through resistor R
4
.
BRIEF SUMMARY OF THE INVENTION
The invention includes a method and apparatus for ensuring that, in an electro-chemically powered system which incorporates at least two communication devices packaged in a single unit, such as a combination cellular telephone and pager, or a combination hand-held computer and pager, sufficient power is provided for extended operation of the communication device having the lowest continuous power consumption requirements when the device having a higher continuous power consumption rate has consumed a selected portion of the total power initially available to the combined devices. In the case of the aforestated first exemplary system (i.e., a combination cellular telephone and pager), cellular telephone function is disabled when a selected portion of the total power initially available is consumed. As a method of a first embodiment of the invention which may be implemented with multiple communication devices powered by a single battery in which voltage varies somewhat linearly as a function of charge level, operation of the high-power-consumption device is disabled when a preset battery charge level is reached. This preset voltage level is well above the critical operating voltage of the pager and corresponds to a battery discharge level that is still able to provide pager operation for an extended period. A second embodiment of the invention, in method form, involves providing a separate power supply for the low-power-consumption communication device for which operation for an extended period must be maintained. As an apparatus, in combination with a combination communication device, the first embodiment of the invention may include a headroom-limited flyback power supply which powers the high-power consumption device. When headroom drops below a minimum set by a series-coupled diode string, power is cut off to the high-power-consumption device. The first embodiment of the invention may alternatively include a battery charge sense circuit which produces a digital signal, the digital signal corresponding to either a battery charge state that is above the predetermined voltage level or a battery charge state that is below the predetermined voltage level. In one state, the produced digital signal maintains operability of the high-power-consumption device. In the other state, the digital signal disables the high-power-consumption device. For a preferred first embodiment apparatus, the invention may also include a visible or audible warning device

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Power-saving mode for portable communication devices does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Power-saving mode for portable communication devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Power-saving mode for portable communication devices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3008439

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.