Telecommunications – Radiotelephone system – Zoned or cellular telephone system
Reexamination Certificate
1998-04-07
2001-05-29
Maung, Nay (Department: 2681)
Telecommunications
Radiotelephone system
Zoned or cellular telephone system
C455S039000, C455S567000
Reexamination Certificate
active
06240288
ABSTRACT:
BACKGROUND
1. Field of the Invention
This invention relates to the field of wireless communication systems. More specifically, the present invention relates to a power management system for mobile stations.
2. Description of the Related Art
The use of wireless communication systems is growing with users now numbering well into the millions. However, one inconvenience associated with routine use of a mobile unit is the constant need to recharge and replace depleted batteries. Even users who make and receive very few telephone calls wherein their mobile units operate mostly in a standby mode (awaiting calls) experience the annoying and frequent problem of depleted battery power.
A large portion of battery power consumed in common standby modes is attributable to call detection processing. For example, in the Global System for Mobile Communications (GSM) wireless communication networks, about once every second, a mobile unit receives and decodes a paging message. The mobile unit processes the paging message to detect in-coming calls. Only rarely does the detection attempt result in discovery of an in-coming call. Unfortunately, a great deal of battery power is consumed in this call detection process.
Base stations transmit paging messages to mobile units based upon the number of mobile units in the base station's area of service. Frequently paging the mobile units reduces the time required to detect an in-coming call. Thus, one reason to frequently page a mobile unit is to minimize the delay between routing a call from the base station to the mobile unit.
As with any transmitted signal, the quality of the signal received by the mobile unit varies based upon a number of factors, including atmospheric conditions, location of the mobile unit, or interference by terrain or buildings. If a paging message received by the mobile unit has degraded, the mobile unit may be unable to decode and process the message. For example, atmospheric conditions may degrade the signal prior to reaching the mobile unit, or the mobile unit may be at the outer transmission boundary of the base station.
Base stations therefore retransmit each paging message multiple times to ensure the mobile station eventually receives a good signal. The number of times the base station retransmits the paging message varies depending upon the service provider. Thus, frequently retransmitting paging messages reduces the delay caused by transmission errors.
In conventional systems, the base station establishes the frequency the paging messages are sent to the mobile units. The frequency which a base station sends paging messages to a mobile unit is related in part to the number of mobile units and in part to the number of times paging messages are retransmitted. For example, if a base station is serving only a few mobile units, the base station may be able to send a paging message to each mobile unit more often. However, if the base station is serving a large number of mobile units, it may take more time to send paging messages to each mobile unit. Likewise, if a base station retransmits a paging message multiple times, it may take more time to send paging messages to each mobile unit.
Improvements in battery technology, while helpful, have done little to avoid the seemingly ever-present need to recharge and replace mobile unit batteries. What is needed is a system to conserve battery power by minimizing the power consumed when processing paging messages.
SUMMARY
The present invention is directed to reducing power consumed by a mobile unit. The present information reduces the frequency the mobile unit processes paging messages. Reduced paging message detection consumes less power and advantageously increases the standby mode lifetime of a mobile unit battery.
In one embodiment, the present invention detects the quality of the signals transmitted by the base station. Based on the signal quality, the mobile unit determines the likelihood of receiving a clear signal. If the signal strength is strong, the mobile unit detects the paging message less often.
One embodiment of the present invention also detects the frequency the base station transmits paging messages to the mobile unit. If the base station is paging the mobile unit on a regular basis, the mobile unit may inhibit paging messages. This allows the mobile unit to conserve energy while ensuring paging messages are detected.
Sometimes a mobile unit is not being powered by a battery. For example, a mobile unit may be installed in an automobile and be powered by the automobile. In this case, the user may prefer to bypass the present invention. Therefore, one embodiment of the present invention includes a bypass option selectable by the user to override the power saving mode.
In an embodiment of the present invention, a wireless communication system comprises a mobile unit and a base station which transmits signals including a series of paging messages to the mobile unit. Each of the series of paging messages indicates whether a call is pending to the mobile unit, and the base station determines how frequently to transmit one of the series of paging messages to the mobile unit. A signal strength detector in the mobile unit determines the quality of the signals received by the mobile unit. A paging message inhibitor inhibits the mobile unit from checking the paging message for at least one paging cycle when the quality of the signals and the repaging rate exceeds predetermined levels.
Another embodiment of the present invention is a method of conserving power in a wireless communication system comprising the acts of determining the page monitoring rate from a base station and determining the quality of signals received from the base station. The page monitoring rate and signal quality are compared to a set of predetermined values and cycles of page monitoring are inhibited when the page monitoring rate and signal quality exceeds one of the set of predetermined values.
Another embodiment of the present invention is a wireless communication system comprising a signal strength indicator which determines the quality of a signal received by a mobile unit. A page inhibitor then causes a mobile unit to inhibit detection of at least one paging message from a base station when the signal quality exceeds a set value.
Another embodiment of the present invention is a wireless communication system comprising a signal strength indicator which determines the quality of a signal received by a mobile unit. A page inhibitor then causes a mobile unit to inhibit detection of at least one paging message from a base station when the repaging rate exceeds a set value.
Another embodiment of the present invention is a method of saving power in a communications system which provides for the transmission of a message a plurality of times comprising the acts of determining the quality of received signals and inhibiting the detection of at least one repeating message based upon the quality of the received signals.
Another embodiment of the present invention is a method of saving power in a communications system which provides for the transmission of a message a plurality of times comprising the acts of determining the quality of received signals and inhibiting the detection of at least one repeating message based upon the repaging rate.
Another embodiment of the present invention is a wireless communication system comprising means for determining the quality of a signal received and means for inhibiting detection of at least one paging message from the base station when the signal quality exceeds a set value.
Another embodiment of the present invention is a wireless communication system comprising means for determining the quality of a signal received and means for inhibiting detection of at least one paging message from the base station when the repaging rate exceeds a set value.
REFERENCES:
patent: 5144296 (1992-09-01), DeLuca et al.
patent: 5301225 (1994-04-01), Suzuki et al.
patent: 5574996 (1996-11-01), Raith
patent: 5826173 (1998-10-01), Dent
patent: 5835023 (1998-11-01), Ito et al.
patent
Anderton David O.
Cox Earl C.
Komaili Jaleh
Wan Yongbing
Conexant Systems Inc.
Knobbe Martens Olson & Bear LLP
Maung Nay
LandOfFree
Power management system for a mobile unit by intelligent... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Power management system for a mobile unit by intelligent..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Power management system for a mobile unit by intelligent... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2541909