Power distributor for a vehicle and production method thereof

Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C361S601000, C361S641000, C361S642000, C361S643000, C361S648000, C361S719000, C361S720000, C174S050510, C174S050510, C165S080300, C165S185000, C337S189000

Reexamination Certificate

active

06724627

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a power distributor for a vehicle for distributing electric power from a power source such as a battery equipped in the vehicle to a plurality of electronic units such as a unit for a center cluster, a unit for an air conditioner, and a unit for a door, and to a production method thereof.
2. Description of the Related Art
Conventionally, for distributing electric power from a common car-mounted power source to each electronic unit, an electric connection box is well-known in which a power distributing circuit is structured by laminating plural sheets of bus bar substrates, and fuses and relay switches are assembled therein.
Further, recently, in order to realize a size reduction of the electric connection box and the high speed switching control, the power distributor has been developed in which semiconductor switching elements such as FETs are inserted between the input terminal and the output terminal instead of relays. For example, JP-A-10-126963 discloses an example in which drain terminals of a plurality of semiconductor switching elements are connected to a metallic plate connected to a power source input terminal, and source terminals of these semiconductor switching elements are respectively connected to separated power source output terminals, and a gate terminal of each of the semiconductor switching elements is connected to a control circuit board.
Further, according to the above publication, a semiconductor switch control chip is mounted on the control circuit board separately from each of the semiconductor switching elements, and when the over current flows through the semiconductor switching element, or when the semiconductor switching element is over heated, a control signal to forcibly turn off the element is inputted into the gate terminal of each of the semiconductor switching elements from the semiconductor switch control chip. In this manner, when the fuse function is added to each of the semiconductor switching elements, because there is unnecessary to assemble a large sized fuse block which requires the exchange operation such as the conventional electric connection box, the maintenance operation is simplified.
The size reduction of the electric connection box into a box smaller than the conventional box is advanced by the introduction of the semiconductor switching element. However, because the electric connection box at least requires the input terminals for introducing the large current, a number of output terminals for distributing the electric power to each of the electronic units, and the control circuit board for controlling the semiconductor switching elements. Therefore, it is difficult to reduce the size so much, and particularly, the reduction of the dimension on thickness becomes a large problem.
Moreover, because a large number of semiconductor switching elements are used, there is a possibility that the temperature in the box is greatly increased due to their heat radiation. Particularly, in the semiconductor switching elements, because the semiconductor switching elements are formed into a package together with a metallic plate on which these elements are mounted, for the purpose of the size reduction, and are in the condition that the packaged units are mounted on the circuit board, there is a disadvantage in which the heat radiated by each of the semiconductor switching elements is easily accumulated, and easily affects the thermally bad influence on the other elements on the circuit board on which the package is mounted.
Moreover, there is a possibility that the semiconductor switching elements are failed and the operation failure occurs due to the over current flowing through the semiconductor switching element or over heat of the semiconductor switching element. When such an operation failure occurs, even when the control signal to be forced turn-off is inputted into the gate terminal of the semiconductor switching element, there is a possibility that the semiconductor switching element is not turned off, and the fuse function is not operated.
SUMMARY OF THE INVENTION
In view of the foregoing problems, an object of the invention is to provide a power distributor for a vehicle which can conduct good power distribution to each electronic unit from a car-mounted power source by a simple and thin type structure, and a method by which the power distributor can be produced by a simple process.
Moreover, another object of the present invention is to provide a power distributor for a vehicle in which the semiconductor switching elements can be properly assembled in the power distribution circuit, and the cooling can be effectively conducted by a simple structure having small number of parts.
According to the invention, there is provided a power distributor for a vehicle for distributing electric power from a common power source equipped in a vehicle to a plurality of electronic units, and an input terminal connected to the power source, a plurality of outputs terminals connected to each of the electronic units, and a plurality of semiconductor switching elements inserted between the input terminal and each of outputs terminals are provided in the distributor, and the input terminal and the output terminal are structured by metallic plates, and the input terminal and the output terminal are arranged on the same plane which is perpendicular to the direction of the plate thickness of the metallic plate.
In this structure, the power source electric power inputted into the input terminal is distributed to each of the output terminals through each of the semiconductor switching elements, and supplied from these output terminals to predetermined electronic units. Further, because the input terminal and output terminals are structured by a metallic plate, and arranged on the surface perpendicular to the direction of the plate thickness, the whole thickness of the power distributor is greatly reduced, and a large degree of compactness and the thickness reduction can be realized.
Herein, the phrase of “arranged on the same plane” does not always means that the whole portions of all terminals are arranged on the same plane, that is, the all terminals are not limited to the planar ones, but, it may be included that the input terminal and the output terminals have also the shape partly depart from the “same plane”. For example, it may be allowed that a portion of the input terminal and the output terminal which are basically arranged on the same plane, is bent and formed into a tab, as will be described later, or the shape in which the end portions of the terminals protrude over a plurality of rows, may also be allowable.
In the present invention, further, the input terminal and the output terminals can be integrated by a simple structure by the resin mold, and when they are integrated by such the resin mold, by protruding the end portion of each of terminals toward the outside of the resin mold, the outer wiring to each of input terminal and output terminals can be easily carried out.
In this connection, this power distributor can be easily produced by a method which includes: a punching process to produce an original plate in which the input terminal and the output terminal are integrally connected to each other, by punching a single metallic plate into a predetermined shape; a molding process to form the resin mold having, outside the original plate, a window for cutting to expose a connection portion of both terminals in the original plate to the outside, and a window for element to expose an area portion on which the semiconductor switching element is mounted, to the outside; a cutting process to cut the connection portion through the window for cutting; and an element arranging process to arrange the semiconductor switching element in the window for element.
In the power distributor, the cover attached to the resin mold in such a manner that it covers each of semiconductor switching elements, is provided, and the case to accommodate the semiconductor switching ele

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Power distributor for a vehicle and production method thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Power distributor for a vehicle and production method thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Power distributor for a vehicle and production method thereof will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3203517

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.