Power distribution in a portable device

Electricity: battery or capacitor charging or discharging – Serially connected batteries or cells

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C320S119000

Reexamination Certificate

active

06362597

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a portable devices and more particularly to a low cost power distribution system and method for a portable device that is powered by a recharger unit or alternatively a rechargeable battery. The portable device includes a bridge battery for powering the portable device in the event the rechargeable battery is removed.
BACKGROUND OF THE INVENTION
Portable electronic devices (e.g. notebook computers, cellular telephone, cordless telephones mobile data terminals, radio frequency portable communication devices, etc.) typically include a rechargeable battery that is charged by a recharging unit plugged into an AC power source, such as that found in conventional 115 VAC lines. The recharging unit powers the portable device, while simultaneously charging the rechargeable battery. The portable device switches over to battery power upon removal of the portable device from the charging unit or the power source. Most intelligent portable devices employ a bridge battery that is utilized during the removable of the main rechargeable battery when it powers the portable device. The main function of the bridge battery is to insure that data stored in a Random Access Memory (RAM) device is not lost during swapping of the rechargeable battery. The bridge battery is usually a much smaller battery because during a battery swap, the portable device normally will enter a low current or suspend mode, so that most current drawn from the bridge battery is used to refresh the RAM device, until a new main battery is installed into the device.
Many portable devices employ complicated switching or logic circuitry when changing from the rechargeable device power to the main battery power, and from the main battery power to the bridge battery power. The switching or logic circuitry takes up valuable space on a circuit board that could be utilized to perform the function of the portable device. In some cases, additional circuit boards are necessary to house the switching or logic circuitry. This increases the size and cost of the portable device. Furthermore, some of these portable devices employ expensive power management and supervisory circuitry to cause the functional components in the portable device to enter different modes, depending on the type of unit powering the portable device or the current status of the unit powering the portable device. The additional power management and supervisory circuitry adds to the size, the cost and also to the complexity of the portable device.
Accordingly, there is a strong need in the art for a system and/or method that can provide power distribution for a portable electronic device at low cost, while reducing space utilized in employing such a system.
SUMMARY OF THE INVENTION
According to a preferred embodiment of the present invention, a power distribution system is provided for distributing power in a portable device being coupleable to a charging system and including a main battery power system and a bridge battery power system. The charge system is coupled to a power bus through a diode. The main battery power system and the bridge battery system are also both coupled to the power bus through diodes. A predetermined voltage level is set with respect to the charging system, the main battery and the bridge battery such that if all three are coupled to the bus, the recharging system both powers the unit and recharges the main battery. If the recharging system is removed, the main battery power system powers the portable device, and if the main battery power system is removed, the bridge battery will provide power to the portable device. The distribution system also includes a monitoring system for measuring a predetermined charge level on the battery and disabling a FET switch, so that the main battery stops charging to protect the main battery against overcharging. A monitoring system is also provided for monitoring the voltage level of the main battery utilizing a comparator system. Accordingly, the present invention provides for a very low cost power distribution system for portable devices.
Thus, according to one aspect of the present invention, a power distribution system is provided that provides power to functional and power circuitry on a portable device. The system includes a main battery system coupled to a power bus through a first switch system and a charging system coupled to the power bus through a second switch system. The charging system provides power to the power bus through the second switch system while the charging system is coupled to the second switch system and the main battery system provides power to the power bus through the first switch system upon removal of the charging system.
In accordance with another aspect of the present invention a power distribution system is provided that provides power to functional and power circuitry on a portable device. The system includes a main battery system coupled to a power bus through a main battery diode and a bridge battery system coupled to the power bus through a bridge battery diode. The voltage level of the bridge battery is lower than the voltage level of the main battery and removal of the main battery system causes the second switch system to allow the bridge battery system to provide power to the power bus.
In accordance with yet another aspect of the present invention, a method is provided for power distribution in a portable device including a power bus coupled to a device power and functional circuitry. The method includes the steps of providing a main battery system coupled to a power bus through a main battery diode, providing a charging system coupled to the power bus through a charger diode and providing a bridge battery system coupled to the power bus through a bridge battery diode wherein the charging system has a voltage level above the main battery voltage level and the main battery has a voltage level above the bridge battery, such that the charger powers the power bus if the charger is present, the main battery powers the power bus if the charger is not present and the bridge battery powers the bus if the charger and the main battery are not present.
In accordance with another aspect of the present invention, a power distribution system is provided that provides power to functional and power circuitry on a portable device. The system includes means for providing main battery power. The means for providing main battery power includes means for coupling the means for providing main battery power to a power bus. The system also includes means for recharging the means for providing main battery power. The means for recharging the means for providing main battery power includes means for coupling the means for recharging to the power bus. The means for charging having a voltage level that is at a predetermined level above a voltage level of the means for providing main battery power causing the means for charging to simultaneously provide power to the power bus and recharge the means for providing main battery power.
In accordance with yet another aspect of the present invention, a power distribution system for providing power to functional and power circuitry on a portable device is provided. The system includes a main battery system coupled to a power bus through a main battery diode, a charging system coupled to the power bus through a charger diode and a bridge battery system coupled to the power bus through a bridge battery diode. The charging system has a voltage level that is at a predetermined level above a voltage level of the main battery system and the voltage level of the bridge battery system is lower than the voltage level of the main battery system. If the charging system is present, the charger diode is forward biased and the charging system provides power to the power bus. If the charging system is not present, the main battery diode becomes forward biased and the main battery system provides power to the power bus. If the charging system and the main battery system are not present, the bridge battery diode becomes

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Power distribution in a portable device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Power distribution in a portable device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Power distribution in a portable device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2845004

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.