Electricity: battery or capacitor charging or discharging – Wind – solar – thermal – or fuel-cell source
Reexamination Certificate
1999-05-03
2001-04-03
Wong, Peter S. (Department: 2838)
Electricity: battery or capacitor charging or discharging
Wind, solar, thermal, or fuel-cell source
C429S010000
Reexamination Certificate
active
06211643
ABSTRACT:
TECHNICAL FIELD OF THE INVENTION
The present invention relates generally to fuel cells and to a power device for use in hydrogen powered cars. More specifically, the present invention discloses a novel power device which does not create any environmentally polluting exhaust, and is extremely efficient, long lasting, quiet and inexpensive.
BACKGROUND OF THE INVENTION
A fuel cell device generates electricity directly from a fuel source, such as hydrogen gas, and an oxidant, such as oxygen or air. It does so by continuously changing the chemical energy of a fuel and oxidant to electrical energy. Since the process does not “burn” the fuel to produce heat, the thermodynamic limits on efficiency are much higher than normal power generation processes. In essence, the fuel cell consists of two catalytic electrodes separated by an ion-conducting membrane. The fuel gas (e.g. hydrogen) is ionized on one electrode, and the hydrogen ions diffuse across the membrane to recombine with the oxygen ions on the surface of the other electrode. If current is not allowed to run from one electrode to the other, a potential gradient is built up to stop the diffusion of the hydrogen ions. Allowing some current to flow from one electrode to the other through an external load produces power.
The membrane separating the electrodes must allow the diffusion of ions from one electrode to the other, but must keep the fuel and oxidant gases apart. It must also prevent the flow of electrons. Diffusion or leakage of the fuel or oxidant gases across the membrane leads to explosions and other undesirable consequences. If electrons can travel through the membrane, the device is fully or partially shorted out, and the useful power produced is eliminated or reduced. Ehrenberg et al. U.S. Pat. No. 5,468,574 discloses such a membrane which allows the diffusion of ions, but prevents both the flow of electrons and the diffusion of molecular gases. This membrane is also mechanically stable.
In constructing a fuel cell, it is particularly advantageous that the catalytic electrodes be in intimate contact with the membrane material. This reduces the “contact resistance” that arises when the ions move from the catalytic electrode to the membrane and vice versa. Intimate contact can be facilitated by incorporating the membrane material into the catalytic electrodes. [See Wilson and Gottsfeld J. Appl. Electrochem. 22, 1-7 (1992)]
For reasons of chemical stability, fuel cells presently available typically use a fully fluorinated polymer such as Dupont Nafion Registered™ as the ion-conducting membrane. This polymer is very expensive to produce, which raises the cost of fuel cells to a level that renders them commercially unattractive.
Ion-conducting polymers are well known. (See Vincent, C. A., Polymer Electrolyte Reviews I, 1987). The known polymers are, for the most part, similar to sulfonated polystyrene because of the known ability of sulfonated polystyrene to conduct ions. Unfortunately, uncrosslinked, highly sulfonated polystyrenes are unstable in the aqueous environment of a fuel cell, and do not hold their dimensional shape.
U.S. Pat. No. 4,849,311 discloses that a porous polymer matrix may be impregnated with an ion-conducting polymer to produce a fuel cell membrane. However, the ion-conducting polymer must be dissolved in a solvent which “wets” the porous polymer. When the solvent evaporates, there is sufficient porosity remaining in the porous polymer/ion-conducting polymer composite material that molecular oxygen can leak through to the fuel gas and result in an explosion.
U.S. Pat. No. 3,577,357 (Winkler) discloses a water purification membrane composed of block copolymers of sulfonated polyvinyl arene block and alpha-olefin elastomeric blocks. In one example a styrene-iosprene-styrene triblock copolymer was selectively hydrogenated, then sulfonated using a premixed SO3/triethylphosphate reagent at 60° C. for 1.5 hrs. A sulfonated styrene-(ethylene-propylene) copolymer was the result. The method provided solid agglomerates of the polymer which were rolled on a mill to remove water, swelled in cyclohexane, slurried in an isopropyl alcohol/water mixture, and coagulated in hot water. No membrane was produced, and we have found that polymers produced according to the method of Winkler cannot be cast into films.
Gray et al. [Macromolecules 21, 392-397 (1988)] discloses a styrene-butadiene-styrene block copolymer where the ion-conducting entity is a pendant short-chain of poly(ethylene oxide) monomethyl ether (mPEG) complexed with LiCF3SO3 salt and connected through a succinate linkage to a flexible connecting entity which is the butadiene block of the triblock copolymer. The ion-conducting entity in the butadiene block is in the continuous phase of the polymer, and the areas populated by the ion-conducting entities do not preferentially touch each other to form continuous ion-conducting domains. This morphology does not facilitate the ion-conducting properties that are necessary for fuel cell operation. The styrene block functions only as a mechanical support structure for the polymer. Moreover, the molecular design chosen by Gray et al. is incompatible with the working environment of a fuel cell. Because the succinate linkage which joins the mPEG to the butadiene backbone and the ether linkages which join the ethylene oxide units are subject to cleavage by acid hydrolysis, these linkages are unstable in the low pH environment of a fuel cell even for short periods of time.
In the art of battery separators, as exemplified by U.S. Pat. No. 5,091,275, a number of porous polymers and filled polymer materials are well known. The pores of these polymers and composite materials are filled with, typically, a liquid electrolyte to conduct ions from one electrode to another in a battery. However, these battery separator materials allow the passage of gases, so that fuel cells made with them have an unfortunate tendency to explode as the oxygen leaks into the hydrogen side of a fuel cell.
To be useful, the hydrogen gas produced must be stored for later use to provide energy when needed. The production of hydrogen from water generally consists of transmitting electrical energy to electrodes within an electrolyzer to induce an electric potential difference which disassociates water into hydrogen and oxygen. The electrolyzer generally contains pure water having as electrolyte of sodium hydroxide or potassium hydroxide. These electrolytes are not destroyed nor do they need to be replenished during the operation of the electrolyzer. Thus, even though the electrolysis action (the producing of chemical changes by the passage of an electric current through an electrolyte (a nonmetallic electric conductor in which current is carried by the movement of ions, or a substance that when dissolved in a suitable solvent or when fused becomes an ionic conductor)) may take place intermittently, the hydrogen produced can be maintained in storage and turned back into electrical energy (either by combustion or by use of a fuel cell) when desired.
One of the more efficient electrolyzers presently available is a solid polymer electrolyte (“SPE”) unit. These units basically consist of two electrodes, an anode and a cathode, placed in a perfluorinated sulfonic acid polymer. The electrodes are connected through an external circuit to a power supply. Water is broken down at the anode into oxygen, hydrogen ions and electrons. The electrons flow through the external circuit to the cathode while the hydrogen ions flow through the electrolytic polymer to the cathode where they combine with the electrons and form hydrogen. The equations at the anode and cathode are:
H
2
O→2H
+
1/2O
2
2e
−
2H
+
2e
−
→H
2
and the overall reaction is:
H
2
O→H
2
1/2O
2
The by-product of this process is an effluent containing trace hydrofluoric acid, oxygen gas and excess water.
SPE electrolyzers are one of the two main types of electrolyzers available. SPE electrolyzers are also known as PEM, or Proton Exchange Membrane, for t
Luk Lawrence
Ward & Olivo
Wong Peter S.
LandOfFree
Power device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Power device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Power device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2531213