Movable or removable closures – With operator for movably mounted closure
Reexamination Certificate
1997-10-22
2001-03-06
Stodola, Daniel P. (Department: 3634)
Movable or removable closures
With operator for movably mounted closure
C049S340000
Reexamination Certificate
active
06195940
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a power actuator for an electrically operated vehicle window, more particularly, to a power actuator for a swingably or pivotably mounted window, such as a rear side or quarter window, of a vehicle, such as a van or the like.
BACKGROUND OF THE INVENTION
It is ofter desirable to provide a powered rear side or rear quarter window for ventilation purposes in vehicles, particularly vans and mini-vans. These rear side or quarter windows are generally swingably mounted and open outwardly of the vehicle body, and are typically remotely activated, as for example from the driver's seat.
Several types of vehicle power window actuators are known and used. Problems associated with these known types of window openers include their high cost, large and cumbersome size, weight, and indirect drive arrangement employing drive cables with a drive motor being located distant from the window. For example, U.S. Pat. No. 4,186,524 discloses a vehicle power window actuator for pivoting a glass view panel about an axis by means of complex back and forth linear movement of a wire cable. U.S. Pat. No. 4 918,865 discloses a power window opener for operation of a quarter window of an automobile comprising an actuation device, a remote electric motor, and pull cable transmitting power from the remote motor to the actuating device.
The Moy U.S. Pat. No. 5,680,728 discloses an improved compact, light weight direct drive vehicle window power actuator for a swingably mounted rear quarter power window for vehicles, such as for example only, vans and mini-vans, that overcomes the problems described in the preceding paragraph.
SUMMARY OF THE INVENTION
The present invention provides a compact, light weight direct drive vehicle window power actuator for a swingably mounted rear quarter power window of vehicles, such as for example only, vans and mini-vans, that includes an electrical stop mechanism for controlling actuator rotation and thus the open and closed positions of the window.
In one embodiment of the invention, a vehicle window direct drive power actuator for pivoting a window outwardly of a vehicle body comprises a reversible electric motor and a power transmitting gear train driven by the motor and including a rotational output gear. The rotational output gear includes stop circuit actuating means thereon for actuating a motor control circuit that controls energization of the reversible electric motor to thereby electrically control the open and closed positions of the window relative to the vehicle body. A window linkage assembly is mounted on the window in a manner to convert the rotational torque of the output gear into an opening-and-closing force for the window. The linkage assembly converts the rotational torque of the rotary output gear in a one direction into a window opening force and a rotational torque in the opposite direction, caused by reversing the driving motor, into a window closing force.
In one particular embodiment of the present invention, the stop circuit actuating means on the output gear comprises a cam-type stop member spaced proximate the periphery of the output gear to rotate therewith so as to engage one of first and second stationary normally closed limit switches of the motor control circuit spaced about the periphery of the output gear in a manner that one limit switch is actuated to cause the motor control circuit to stop the motor at a desired window “open” position and the other limit switch is actuated to stop the motor at the desired window “closed” position.
In another particular embodiment of the present invention, the stop circuit actuating means on the output gear comprises an electrically conductive wiper finger arranged to rotate with the output gear and to engage stationary arcuate electrically conductive contact traces of the motor control circuit. The lengths of the arcuate traces are varied in a manner that the wiper finger disengages therefrom at selected rotational positions of the output gear to cause the motor control circuit to stop the motor at desired window “open” and “closed” positions.
In another particular embodiment of the present invention, the motor control circuit comprises first and second circuit legs connected between a source of voltage and the motor. The circuit legs each include a diode with the diode in one leg being oppositely oriented relative to the diode in the other leg. Each circuit leg also includes means responsive to the motor control circuit actuating means for interrupting current flow in one leg in dependence on the position of the window at one of an open or closed position while the other leg remains uninterrupted to current flow. Switch means connected between the source and the circuit legs can be actuated to cause reverse current flow in the uninterrupted circuit leg in a manner to cause movement of the window to the other of the open or closed position.
The actuator of the present invention is a direct drive actuator. By direct drive actuator is meant that the driving device (motor) is located adjacent the window and transmits power to the window linkage assembly by means of gears and shafts like the aforementioned Moy U.S. Pat. No. 5,680,728 and, unlike the indirect drive actuators disclosed in U.S. Pat. Nos. 4,186,524 and 4,918,865, no cables are present as power tranmitting members.
The actuator of the present invention is advantageous in that the electrical stop mechanism for controlling the actuator reduces the amount of shock loading or stress imposed on the gear train as well stalling of the reversible motor, thus improving durability of the gear train/motor and providing possible reduction in gear train size and cost.
REFERENCES:
patent: 1644691 (1927-10-01), Pritchard
patent: 4186524 (1980-02-01), Plechat
patent: 4403449 (1983-09-01), Richmond
patent: 4918865 (1990-04-01), Hirai
patent: 5036620 (1991-08-01), Beran et al.
patent: 5140771 (1992-08-01), Moy et al.
patent: 5161419 (1992-11-01), Moy et al.
patent: 5203113 (1993-04-01), Yagi
patent: 5385061 (1995-01-01), Moy et al.
patent: 5680728 (1997-10-01), Moy
Cohen Curtis A.
Saturn Electronics & Engineering, Inc.
Stodola Daniel P.
LandOfFree
Power actuator for a vehicle window does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Power actuator for a vehicle window, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Power actuator for a vehicle window will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2509758