Radiant energy – Radiant energy generation and sources
Reexamination Certificate
2002-07-10
2003-07-22
Lee, John R. (Department: 2881)
Radiant energy
Radiant energy generation and sources
C250S495100, C250S493100, C392S407000, C252S500000, C252S587000, C252S508000
Reexamination Certificate
active
06597004
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a powdered far-infrared radiator radiating far-infrared rays at an ordinary temperature and a method of making the powdered far-infrared radiator.
2. Description of the Related Art
Far-infrared trays can be used as a high efficient thermal energy and have a bactericidal action, an antioxidant action, etc. all of which have been tried to be used in various fields. The inventor found that a type of quartz schist radiated far-infrared rays even at an ordinary temperature, namely, at or below 20° C. In order that the quartz schist radiating far-infrared rays at the ordinary temperature may be provided as a high practical and valuable product, the inventor then invented a novel far-infrared radiator and a method of making the far-infrared radiator. In this method, the quartz schist is pulverized into powder having a grain diameter ranging 75 &mgr;m to 35 &mgr;m. The powder is then mixed with powdered stainless steel, and the mixture is shaped into a predetermined shape and sintered. A patent application was filed for the invention in Japan and assigned with patent application number of 8-164292.
The far-infrared radiator of the above-described type serves as a hot compress pack facilitating blood circulation when applied to parts of a human body. However, the foregoing far-infrared radiator is generally formed into a hard solid state such as the shape of a tablet or plate. When applied to a human body, a tablet-shaped radiator is sewn in a pocket formed on a band-shaped piece of cloth or the like. Thus, the radiator is limited in its mode of use. Accordingly, a range of use of the far-infrared radiator is desired to be increased.
SUMMARY OF THE INVENTION
Therefore, an object of the present invention is to provide a powdered far-infrared radiator which radiates far-infrared rays at an ordinary temperature and which can be used in various forms, thereby increasing a range of use thereof, and a method of making the powdered far-infrared radiator.
The inventor found that quartz schist mined at or near Mount Deki located at a northeastern part of Aichi prefecture in Japan (Shitara-cho, Kitashitara-gun) radiated far-infrared rays even at an ordinary temperature, namely, at or below 20° C. The quartz schist contains SiO
2
as a main component. The quartz schist in the foregoing district is guessed to have obtained the property of radiating far-infrared rays during formation for geographic or stratigraphic reasons, which property differs from those of other types of quartz schist. The geographic or stratigraphic reasons include one that the quartz schist layer lies near a tectonic line.
The aforementioned quartz schist having the characteristic of radiating far-infrared rays at an ordinary temperature was pulverized into a powder having a grain diameter not exceeding 6 &mgr;m with the bulk specific gravity being reduced. The inventor ascertained that the grains were uniformly dispersed (suspended) without precipitating even when the powder was mixed with a liquid, cream, gel such as adhesive agent, thereby having made the present invention. The inventor further found that when the powder was heat-treated at or above 200° C., a radiating efficiency of the powdered far-infrared radiator was increased as compared with a case where the powder was not heat-treated.
In one aspect, the present invention provides a powdered far-infrared radiator comprising a quartz schist pulverized into a powder having a grain diameter not exceeding 6 &mgr;m and heat-treating the powder at or above 200° C., the quartz schist radiating far-infrared rays at an ordinary temperature.
In another aspect, the invention provides a method of making a powdered far-infrared radiator comprising pulverizing a quartz schist into a powder having a grain diameter not exceeding 6 &mgr;m by means of wet grinding, the quartz schist radiating far-infrared rays at an ordinary temperature and heat-treating the pulverized powder at or above 200° C.
The above-described quartz schist is pulverized into the powder having the grain diameter not exceeding 6 &mgr;m. Consequently, the powdered far-infrared radiator can uniformly be dispersed even when mixed with a liquid or cream. Accordingly, the powdered far-infrared radiator can take various forms when actually used, so that a range of use thereof can be increased. Furthermore, a surface area of the radiator can be increased to a large extent since the radiator is powdered. The radiating efficiency of the radiator can further be improved by the heat treatment. Additionally, the permeability of the radiator from human skin can be improved when the radiator is caused to act upon a human body. Consequently, an efficacy of the radiator can be improved.
In making the powdered far-infrared radiator, a raw ore of the quartz schist is pulverized by means of wet grinding using a ball mill with ceramic. Thereafter, only the powder having a grain diameter not exceeding 6 &mgr;m is extracted using a vibratory screen, for example. In the heat treatment, the obtained powder is heated at or above 200° C. or more specifically, at or above 300° C., whereupon a heat-treatment time can be shortened.
The powdered far-infrared radiator of the present invention is fine powdered as described above and has a characteristic of radiating far-infrared rays at the ordinary temperature. Accordingly, the radiator can be used for purposes including application to a human body for facilitation of the blood circulation due to the characteristic thereof, namely, heating action (far-reachingness). Furthermore, a bactericidal action and an antibacterial action (antioxidant action) of the far-infrared rays can be utilized. More specifically, the powdered far-infrared radiator of the invention can be used in the following forms and purposes. Firstly, the powdered far-infrared radiator may be included in a cream or liquid so as to be used as a cosmetic or medicine both applied to a skin. Consequently, since the radiator is easily applied to human skin, its characteristic of radiating far-infrared rays can be utilized as the cosmetic or medicine both applied to the skin.
More specifically, when mixed with a facial cream, hand cream, beauty wash or toilet lotion, milky lotion, etc., the radiator can improve the cosmetic effects of skin cosmetics including prevention of skin irritation, spots, freckles, etc. Furthermore, when mixed with a medicated cream, a cream (ointment) used for first aid or the like in sports, etc., the radiator can improve skin troubles such as atopic dermatitis, ease the stiffness in the shoulders, pain in the knee, lumbago, bruise, sprain, muscular pain, etc. The radiator can further improve effects of plasters for sterilization of external wound, inflammation, etc., disinfection, pain-killing, antiphlogistic, etc. When mixed with the cream or the like, the powdered far-infrared radiator preferably ranges 5 to 20 weight percentage (wt. %). The radiator has a conspicuous effect on the improvement in the atopic dermatitis particularly when an amount thereof is increased to about 30 wt %.
The powdered far-infrared radiator may be held directly on a cloth-like holder or indirectly on a member bonded to the holder, whereby the radiator serves for care or first aid as a taping member as used in sports, poultice, or sticking or adhesive plaster. Thus, the powdered far-infrared radiator can easily be held on the cloth-like holder such as cloth, paper, plastic film, etc. When the cloth-like holder is applied to or wound on a human body, the characteristic of radiating far-infrared rays can be utilized for care or first aid.
When held on the cloth-like holder, the powdered far-infrared radiator may be mixed with an adhesive agent to be applied to the cloth-like holder. Regarding cloth and paper, the radiator may be caused to permeate fiber or thread which is woven into the cloth, thereby to be held. The powdered far-infrared radiator used preferably ranges 0.5 to 3 g per centare. Furthermore, when mixed with an adhesive agent, the powde
Hughes James P.
Lee John R.
LandOfFree
Powdered far-infrared radiator and method of making the same does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Powdered far-infrared radiator and method of making the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Powdered far-infrared radiator and method of making the same will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3084769