Powder free neoprene surgical gloves

Apparel – Hand or arm coverings – Gloves

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C002S016000, C002S159000, C002S161700, C428S035700, C428S036800

Reexamination Certificate

active

06195805

ABSTRACT:

This invention relates to gloves and their manufacture. More particularly, the invention relates to a unique powder-free medical glove fabricated from a neoprene copolymer, and method of making same. The gloves of the invention are easily donned without the use of powdered donning agents and retain their puncture resistance, tensile strength, stress at 500% and elongation to break after post-processing by chlorination and sterilization by irradiation. Additionally, the gloves of the invention exhibit minimal discoloration and minimal stickiness to themselves and to glove packing materials after sterilization by irradiation.
BACKGROUND OF THE INVENTION
Many of the elastomeric materials commonly employed in the manufacture of surgeon's gloves and related articles, such as natural rubber latex, have been said to have allergenic properties. Attempts to render natural rubber gloves hypoallergenic have variously focussed on laminating or coating the interior surface of the glove with a less potentially allergenic material. These laminates and coatings have also been used to improve the wet and dry donning characteristics of the gloves. However, these laminates or coatings can easily crack, especially when the glove is flexed or stretched, and expose the wearer to the base natural rubber polymer used to construct the glove.
An alternative solution to the potential allergenicity problem associated with natural rubber gloves is to eliminate the natural rubber completely and construct the glove from a synthetic elastomer which does not contain potential allergens. However, heretofore known synthetic elastomer gloves have a different feel than natural rubber gloves and are often perceived by the wearer to be less comfortable than natural rubber gloves.
Gloves fabricated from synthetic elastomers can also be difficult to don. Wet and dry donning of gloves can be facilitated by coating the interior of the glove with powder. However, powdered medical gloves increase the risk of contamination and inflammation to the patient if powder from the surgeon's gloves is accidentally introduced into a wound or incision. Powdered gloves are also disfavored in electrical applications because powder is a potential contaminant source in demanding electronic fabrication facilities.
SUMMARY OF THE INVENTION
The present invention provides a powder-free glove fabricated from a synthetic elastomer wherein good donning characteristics are obtained without the need for powdered donning agents such as talc, corn starch or calcium carbonate and without the need to provide a continuous polymeric laminate or coating on the interior surface of the glove.
The present invention also provides a powder-free synthetic elastomer glove which possesses various physical properties such as puncture resistance, tensile strength, stress at 500% and elongation to break that are comparable to those exhibited by natural rubber gloves yet which are free of proteins and other potential allergens.
The present invention further provides a powder-free synthetic elastomer glove which, after post-processing by chlorination and sterilization by electron beam radiation, retains, and in some cases, enhances its physical properties and exhibits minimal discoloration and minimal stickiness to itself and to the glove packing material.
According to an aspect of the present invention there is provided a powder-free hypoallergenic glove fabricated from a neoprene copolymer which has physical properties such as puncture resistance, tensile strength, stress at 500% and elongation to break that are at least comparable to natural rubber gloves.
According to a further aspect of the invention there is provided a powder-free hypoallergenic glove fabricated from a neoprene copolymer which retains its puncture resistance, tensile strength, stress at 500% and elongation to break after post-processing by chlorination and electron beam sterilzation. Additionally, the glove of the invention exhibits minimal discoloration and minimal stickiness to itself and to the glove packing material after sterilization with electron beam radiation.
According to another aspect of the invention, the neoprene copolymer glove, which may be manufactured using glove manufacturing techniques and processes such as those set forth in “Natural Rubber Dipping Technologies” by R. D. Culp and B. L. Pugh, symposium on Latex as a Barrier Material, Apr. 6 and 7, 1989, University of Maryland, is rendered powder-free by post-processing chlorination and then sterilized by irradiation. Electron beam sterilization produces a glove whose physical properties (such as puncture resistance, tensile strength, stress at 500%, elongation to break, color and stickiness) are superior to gloves sterilized by the more commonly used gamma beam irradiation at the same dose.
PREFERRED EMBODIMENTS OF THE INVENTION
The Neoprene Copolymer Latex
The gloves of the invention are preferably formed from a copolymer latex of neoprene (also known as chloroprene or 2-chloro-1,3-butadiene) and 2,3-dichloro-1,3-butadiene. Preferrably, the neoprene/2,3-dichloro-1,3-butadiene copolymer contains between about 25 to about 55% chlorine. More preferrably, the copolymer contains between about 35% to about 45% chlorine. In the most preferred embodiment of the invention, the copolymer contains about 40% chlorine. Other suitable monomers which may be copolymerized with neoprene include sulfur, methacrylic acid, acrylonitrile, 2-cyano-1,3-butadiene and 1,1,3-trifluoro-1,3-butadiene.
The modulus of elasticity of the copolymers of the invention should not be greater than about 0.6 MPa at 100% elongation. Preferrably, the modulus of elasticity is about 0.4 MPa at 100% elongation. A detailed explanation of these values is set forth in the duPont Bulletin, “A Selection Guide For Neoprene Latexes”, Table II, by C. H. Gilbert, 1985 (NL-020.1 (R1)) which is hereby incorporated by reference.
The neoprene copolymers of the invention have a solids content ranging from between about 35% to about 60% by weight. The preferred solids content of the neoprene copolymer is about 50%.
The neoprene copolymers employed in the present invention have a slow crystallization rate, a medium gel content of about 60% and a high wet gel strength. The neoprene copolymer latexes are preferrably anionic. Additional information about these polymers is contained in the above-referenced duPont bulletin as well as duPont Bulletin “Neoprene Latexes-Their Preparation And Characteristics”, L. L. Harrell, Jr., 1981 (ADH 200.1) which is hereby incorporated by reference.
The most preferred neoprene copolymer latex used in the practice of the invention is a copolymer of neoprene and 2,3-dichloro-1,3-butadiene which is sold commercially by duPont under the code number 750. This anionic copolymer latex has a chlorine content of 40% and possesses the preferred properties disclosed above for the neoprene copolymer. A specific description of this latex appears in the duPont Bulletin authored by Gilbert referenced above.
The neoprene copolymer latex can also be blended with other inorganic fillers such as calcium carbonate, carbon black and clay as well as other elastomers such as nitrile rubber, polyisoprene, styrene butadiene rubber and butyl rubber. These neoprene copolymer blends are particularly suitable for manufacture of industrial, surgical and examination gloves of the invention.
Glove Compounding Ingredients
The compounding agents used in glove formulation are set forth below.
PARTS PER HUNDRED RUBBER
INGREDIENTS
(PHR)
Neoprene copolymer latex or blend
100.00
Plasticizer stabilizer
0.5 to 5.00
Emulsifier stabilizer
0.5 to 5.00
Antiozonant
0.25 to 5.00
pH stabilizer sequestrate
0.10 to 1.50
pH stabilizer
0.10 to 1.50
Vulcanization activator
1.0 to 10.00
Crosslinker
0.50 to 3.0
Vulcanization accelerator
0.5 to 4.00
Antioxidant
0.10 to 3.00
White pigment (optional)
0.05 to 3.00
Yellow pigment (optional)
0.05 to 3.00
Rubber reoderant (optional)
0.001 to 1.0
Wetting agent emulsifier
0.001 to 1.0
Defoamer
0.001 to 2.0
Rubber softener (optional)
0.0 to 20.0
The pla

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Powder free neoprene surgical gloves does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Powder free neoprene surgical gloves, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Powder free neoprene surgical gloves will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2453682

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.