Post-harvest non-containerized reporting system

Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Earth science

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06687616

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates in general to a post-harvest non-containerized reporting system, more specifically, a method of using spatial and time-stamped data recorded from GPS receivers mounted on grain harvest and transport vehicles to track agricultural products through the harvest process. Information about the time and location of vehicles involved in the harvest and transport of the grain or other agricultural product is collected and analyzed using a geographic information system. The output of this invention is the electronic tracking of a defined quantity or load of the product from harvest to storage which can be used to evaluate and optimize the efficiency of the harvest and transport operation and/or validate the process integrity based on data from multiple GPS receivers.
2. Description of the Prior Art
There are a multitude of situations for which data regarding yield, field characteristics, and equipment operation during harvest is useful. The use of GPS (Global Positioning System) receivers and on-the-go yield monitoring equipment to collect yield map information is common in modem farm operations. Yield maps enable growers to evaluate and optimize production practices in each area of each field. These technologies also enable collection of location- and time-stamped data that provide an electronic verification of field operations. There are many ways this information could be used.
This kind of information would be beneficial if a grain buyer contracted with grower/producers and needed information about yield from each grower and/or for each field, and needed to associate that information with the growers' contract and with the batch or lot of crop that is harvested. In addition, an individual farmer could make use of this information to provide yield data not only obtained from a particular field but the yield pattern within that field. Furthermore, information associated with a crop produced in a contracted field would be desirable to help provide quality assurance data. And, for some food and export markets, buyers may need assurance that the crop is free from contamination by genetically modified organisms (GMO's). Finally, tracking certain equipment use could be employed to determine and optimize efficiency of the harvest operation.
It is known in the art to use pre-loaded GPS (global positioning satellites) receiver locations and uniquely identified crop markers such that when the location of the harvester matches a pre-selected GPS location, a crop marker is dispensed into the crop stream during harvest. Later analysis of crop near the marker provides crop characteristic mapping within a field. (See U.S. Pat. No. RE37,574E). Or, analysis can be done at the time of gathering the sample and recorded. In this instance, the sample is gathered according to pre-determined GPS locations and analysis is done directly. (See U.S. Pat. No. 6,119,531).
It is also known in the art to use a handheld graphic user interface (GUI) personal digital computer coupled to a GPS receiver for hand entry and recordation by the user of information tied to location. This information can include that such as herbicide and fertilizer application, soil type, crop history per field, graphic representations of each field including landmarks, tillage records by date and equipment used, tile maps, etc. (See U.S. Pat. No. 5,699,244).
There are also systems in use which track and transmit current locations of a vehicle. These systems are most often used in fleet management operations to verify delivery of a package or to signal a driver that there is a pick up to be made near his present location. One such system transmits the time and location of a vehicle and comparison is made to the time and location expected for that vehicle on a pre-mapped and timed route. Status signals are sent to a messagecenter if the expected location is not reported for the expected time. (See International Publication No. WO 00/42562).
Although some uses of GPS locations paired with crop data and some uses of GPS locations paired with vehicle routes have been made, there still remains a set of unmet data and reporting needs.
It would be desirable to be able to report the location within a field from which a particular load of grain or other agricultural product was harvested and be able to verify exactly the route the load took from combine to elevator or bin without resorting to a containerized system.
For large companies which contract crop production with many growers, it is desirable for the company to be able to track harvested crop by grower, by field, even by load to tabulate yield, harvest efficiency, and integrity of harvest to delivery.
In order for such a harvesting tracking system to provide the necessary data, the system should include built-in integrity checks, should require only minimal manual intervention, should provide data which is easily associated in pairs or more, can be segregated into various sets, and is transportable. The present invention differs from the above referenced inventions and others similar in that these prior devices do not meet the needs outlined wherein the present invention has been designed to do so.
SUMMARY
The present invention provides a method and a system for tracking and associating multiple pieces of location-based and time-stamped data. However, prior to providing a summary of the present invention, it will be useful to the reader to understand the general harvesting process and to realize that there are variations of this process per crop, per grower, and per geographic area.
When a field is harvested there are usually at least three mobile vehicles in the field each with different roles. There is the harvesting machine or combine which is the machine that actually gathers the plants or crop and collects it in a holding tank. Also, there is a grain cart. When the holding tank of the combine is full, the grain cart is moved into position next to the combine and an auger or other means transports the grain from the combine holding tank into the grain cart In the present invention, the crop in the holding tank of the combine is considered one load. The significance of this will be explained below. The unloading of the combine or harvesting machine can be accomplished while the combine and the grain cart move, in tandem, so that the time used for unloading is not lost from harvesting. Even if not transferred on the move, it is far more efficient to transfer a load into a grain cart which is in position next to the combine than to turn the combine out of the field and take it to another location to unload, especially where the combine's holding tank is full somewhere in the middle of the field rather than at either end.
The grain cart then either waits for the combine to unload again and fill the grain cart or, if full, the grain cart transports the crop in its holding tank to the edge of the field where a truck awaits. The grain cart is also equipped with means for unloading its cargo so that it transfers the crop in the cart to the truck. Depending on the relative sizes of the cart and the truck, it may take several grain carts full of crop to fill a truck. However, once full, the truck transports the crop to a storage place. The storage place is most often an elevator or a large grain bin. Typically, if taken to an elevator, the truck is driven across a scale full and weight and time is recorded. Then the grain is removed from the truck, and the truck is again weighed empty to estimate the amount of grain delivered in that load. The process used to harvest any one field may include multiple combines, grain carts, and trucks.
The present invention starts with assigning a digital identification for each vehicle through association of a GPS receiver and a data logging device with each vehicle. In addition, the boundary of each field for which data will be collected is pre-mapped and stored in a geographic information system. Each field is also assigned a digital identification. Field bounda

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Post-harvest non-containerized reporting system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Post-harvest non-containerized reporting system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Post-harvest non-containerized reporting system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3351669

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.