Optical: systems and elements – Optical modulator – Light wave temporal modulation
Reexamination Certificate
2001-03-14
2003-06-10
Epps, Georgia (Department: 2873)
Optical: systems and elements
Optical modulator
Light wave temporal modulation
C345S084000, C345S107000
Reexamination Certificate
active
06577432
ABSTRACT:
CROSS-REFERENCE TO RELATED APPLICATIONS
None.
BACKGROUND OF THE INVENTION
The present invention relates to microfabricated structures to interact with electromagnetic waves and, more particularly, to such structures containing pockets and posts for positioning optically anisotropic particles (e.g., rotary balls). Still more particularly, the invention is drawn to addressable, reusable visual displays which may be paper-like, such as “gyricon” or twisting-particle displays.
For purpose of illustration, the present application uses structures of gyricon displays to demonstrate the concepts and the benefits of the inventive structure.
A gyricon display, also called a twisting-particle display, rotary ball display, particle display, dipolar particle light valve, etc., offers a technology for making a form of electric paper and other reflective displays. Briefly, a gyricon display is an addressable display made up of a multiplicity of optically anisotropic particles, with each particle being selectively rotatable to present a desired face to an observer. The rotary particle can be of various shapes, such as spherical or cylindrical. For convenience, balls, rather than cylinders, are used in this description for illustrations. Like ordinary paper, electric paper preferably can be written on and erased, can be read in ambient light, and can retain imposed information in the absence of an electric field or other external retaining force. Also like ordinary paper, electric paper preferably can be made in the form of a lightweight, flexible, durable sheet that can be folded or rolled into tubular form about any axis and can be conveniently placed into a shirt or coat pocket and then later retrieved, restraightened, and read substantially without loss of information. Yet unlike ordinary paper, electric paper preferably can be used to display full-motion and changing images as well as still images and text. Thus, it is particularly useful for bistable displays where real-time imagery is not essential, but also adaptable for use in real-time imaging such as a computer display screen or a television.
A gyricon display, also called a twisting-particle display, rotary ball display, particle display, dipolar particle light valve, etc., offers a technology for making a form of electric paper and other reflective displays. Briefly, a gyricon display is an addressable display made up of a multiplicity of optically anisotropic particles, with each particle being selectively rotatable to present a desired face to an observer. The rotary particle can be of various shapes, such as spherical or cylindrical. For convenience, balls, rather than cylinders, are used in this description for illustrations.
In the prior art, the black-and-white balls (particles) are embedded in a sheet of optically transparent material, such as an elastomer sheet. The elastomer sheet is then cured. After curing, the elastomer sheet is placed in a plasticizer liquid, such as a dielectric fluid. The dielectric plasticizer swells the elastomer sheet containing the particles creating cavities larger than the particles around the particles. The cavities are also filled with the absorbed dielectric fluid. The fluid-filled cavities accommodate the particles, one particle per cavity, so as to prevent the particles from migrating within the sheet.
Besides being optically anisotropic, the particles are electrically dipolar in the presence of the fluid. This may be accomplished by simply including in one or both hemispheres materials that impart an electrical anisotropy, or by coating one or both sides of hemispheres with materials that impart electrical anisotropy. The above charge activation agents may impart an electrical anisotropy and an optical anisotropy at the same time. For example, when each hemisphere of a gyricon particle is coated with a material of a distinct electrical characteristic (e.g., Zeta potential with respect to a dielectric fluid) corresponding to a distinct optical characteristic the particles will have an electrical anisotropy in addition to their optical anisotropy when dispersed in a dielectric liquid. It is so because when dispersed in a dielectric liquid the particles acquire an electric charge related to the Zeta potential of their surface coating.
An optically anisotropic particle can be selectively rotated within its respective fluid-filled cavity, for example by application of an electric field, so as to present either its black or white hemisphere to an observer viewing the surface of the sheet. Under the action of an addressing electric field, such as provided by a conventional matrix addressing scheme, selected ones of the optically and electrically anisotropic particles are made to rotate or otherwise shift their orientation within their cavities to provide a display by the selective absorption and reflection of ambient light. In the case of balls with black and white hemispheres, for example, an image is formed by the pattern collectively created by each individual black and white hemisphere. Thus, by the application of an electric field addressable in two dimensions (as by a matrix addressing scheme), the black and white sides of the particles can be caused to appear as the image elements (e.g., pixels or subpixels) of a displayed image. Since the particles need only rotate, not translate, to provide an image, much faster imaging response is achieved than with the display of U.S. Pat. No. 3,612,758.
Normally, the particles are kept from rotating freely by a certain degree of frictional adhesion to the cavities. When the electric field is applied to the sheet, the adhesion of each particle to the cavity is overcome and the particles are rotated to point either their black or white hemispheres towards the transparent surface. Even after the electric field is removed, the structure (i.e., particles arranged in a specific pattern of orientations) will stay in position and thus create a bistable display until the particles are dislodged by another electric field. These bistable displays are particularly useful for remotely addressable displays that require little power to switch and no power to maintain display image for a long period of time (e.g., months).
Gyricon display technology is described further in U.S. Pat. No. 4,126,854 (Sheridon, “Twisting Ball Panel Display”) and U.S. Pat. No. 5,389,945 (Sheridon, “Writing System Including Paper-Like Digitally Addressed Media and Addressing Device Therefor”). Further advances in black and white gyricon displays have been described in U.S. Pat. No. 6,055,091 (Sheridon, “Twisting-Cylinder Display”). The above-identified patents are all hereby incorporated by reference. The Sheridon patent disclosed a gyricon display which uses substantially cylindrical bichromal particles rotatably disposed in a substrate. The twisting cylinder display has certain advantages over the rotating ball gyricon because the elements can achieve a much higher packing density. The higher packing density leads to improvements in the brightness of the twisting cylinder display as compared to the rotating ball gyricon.
Gyricon displays are not limited to black and white images, as gyricon and other display mediums are known in the art to have incorporated color. Gyricons incorporating color have been described in U.S. Pat. No. 5,760,761 titled “Highlight Color Twisting Ball Display”, U.S. Pat. No. 5,751,268 titled “Pseudo-Four Color Twisting Ball Display”, U.S. patent application Ser. No. 08/572,820 titled “Additive Color Transmissive Twisting Ball Display”, U.S. patent application Ser. No. 08/572,780 titled “Subtractive Color Twisting Ball Display”, U.S. Pat. No. 5,737,115 titled “Additive Color Tristate Light Valve Twisting Ball Display”, U.S. Pat. No. 6,128,124 titled “Additive Color Electric Paper Without Registration or Alignment of Individual Elements” and European Patent No. EP0902410 titled “Methods for Making Spinnable Ball, Display Medium and Display Device”. The above-identified patents are all hereby incorporated by reference.
The above prior art all involve a process wh
Biernath Rolf W.
Engler David A.
3M Innovative Properties Company
Buckingham Stephen W.
Epps Georgia
O'Neill Gary
LandOfFree
Post and pocket microstructures containing moveable... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Post and pocket microstructures containing moveable..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Post and pocket microstructures containing moveable... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3094547