Liquid purification or separation – Flow – fluid pressure or material level – responsive – Diverse sensing means
Reissue Patent
2002-07-09
2004-03-30
Prince, Fred G. (Department: 1724)
Liquid purification or separation
Flow, fluid pressure or material level, responsive
Diverse sensing means
C210S138000, C210S167150, C210S416200, C210S242100, C015S001700, C134S16700R, C134S16800C
Reissue Patent
active
RE038479
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a method and apparatus powered from the pressure side of a pump for cleaning a water pool, e.g., swimming pool.
BACKGROUND OF THE INVENTION
The prior art is replete with different types of automatic swimming pool cleaners. They include water surface cleaning devices which typically float at the water surface and skin floating debris therefrom. The prior art also shows pool wall surface cleaning devices which typically rest at the pool bottom and can be moved along the wall (which term should be understood to include bottom and side portions) for wall cleaning, as by vacuuming and/or sweeping. Some prior art assemblies include both water surface cleaning and wall surface cleaning components tethered together.
SUMMARY OF THE INVENTION
The present invention is directed to a method and apparatus driven by a positive pressure water source for cleaning the interior surface of a pool containment wall and the upper surface of a water pool contained therein.
Apparatus in accordance with the invention includes: (1) an essentially rigid unitary structure, i.e., a cleaner body, capable of being immersed in a water pool and (2) a level control subsystem for selectively moving the body to a position either (1) proximate to the surface of the water pool for water surface cleaning or (2) proximate to the interior surface of the containment wall for wall surface cleaning.
The invention can be embodied in a cleaner body having a weight/buoyancy characteristic to cause it to normally rest either (1) proximate to the pool bottom adjacent to the wall surface (i.e., heavier-than-water) or (2) proximate to the water surface (i.e., lighter-than-water). With the heavier-than-water body, the level control subsystem in an active state produces a vertical force component for lifting the body to proximate to the water surface for operation in a water surface cleaning mode. With the lighter-than-water body, the level control subsystem in an active state produces a vertical force component for causing the body to descend to the wall surface for operation in the wall surface cleaning mode.
A level control subsystem in accordance with the invention can produce a desired vertical force component using one or more of various techniques, e.g., by discharging an appropriately directed water outflow from the body, by modifying the body's weight/buoyancy characteristic, and by orienting hydrodynamic surfaces or adjusting the pitch of the body.
Embodiments of the invention preferably also include a propulsion subsystem for producing a nominally horizontal (relative to the body) force component for moving the body along (1) a path adjacent to the water surface when the body is in the water surface cleaning mode and (2) a path adjacent to the wall surface when the body is in the wall surface cleaning mode. When in the water surface cleaning mode, debris is collected from the water surface, e.g., by skimming either with or without a weir. When in the wall surface cleaning mode, debris is collected from the wall surface, e.g., by suction.
Embodiments of the invention are configured to be hydraulically powered, from the positive pressure side of an external hydraulic pump typically driven by an electric motor. This pump can comprise a normally available water circulation pump used alone or in combination with a supplemental booster pump. Proximal and distal ends of a flexible supply hose are respectively coupled to the pump and cleaner body for producing a water supply flow to the body for powering the aforementioned subsystems. The hose is preferably configured with portions having a specific gravity>0.1 so that it typically lies at the bottom of the pool close to the wall surface with the hose distal end being pulled along by the movement of the body.
In preferred embodiments of the invention, the water supply flow from the pump is distributed by one or more control elements (e.g., valves) to, directly or indirectly, create water flows for producing vertical and horizontal force components for affecting level control and propulsion. A preferred propulsion subsystem is operable in either a normal state to produce a force component for moving the body in a first direction, e.g., forward, or a redirection (e.g.,backup) state to produce force components acting to move the body in a second direction, e.g., lateral and/or rearwardly. Water surface cleaning and wall surface cleaning preferably occur during the normal propulsion state. The redirection propulsion state assists the body in freeing itself from obstructions.
In a preferred heavier-than-water embodiment, a water distribution subsystem carried by the cleaner body selectively discharges water flows via the following outlets:
1. forward thrust jet
2. redirection or rearward (“backup”) thrust jet
3. forward thrust/lift jet
4. vacuum jet pump nozzle
5. skimmer jets
6. debris retention jets
7. sweep hose
8. front chamber fill
The water flows discharged from these outlets produce force components which primarily determine the motion and orientation of the body. However, the actual motion and orientation at any instant in time is determined by the net effect of all forces acting on the body. Additional forces which effect the motion and orientation are attributable, inter alia, to the following:
a. the weight and buoyancy characteristics of the body itself
b. the hydrodynamic effects resulting from the relative movement between the water and body
c. the reaction forces attributable to sweep hose action
d. the drag forces attributable to the supply hose, debris container, etc.
e. the contact forces of cleaner body parts against the wall surface and other obstruction surfaces
A preferred cleaner body in accordance with the invention is comprised of a chassis supported on a front wheel and first and second rear wheels. The wheels are mounted for rotation around horizontally oriented axles. The chassis is preferably configured with a nose portion proximate to the front wheel and front shoulders extending rearwardly therefrom. The shoulders taper outwardly from the nose portion to facilitate deflection off obstructions and to minimize drag as the body moves forwardly through the water. Side rails extending rearwardly from the outer ends of the shoulders preferably taper inwardly toward a tail portion to facilitate movement of the body past obstruction surfaces, particularly in the water surface cleaning mode.
The body is preferably configured so that, when at rest on a horizontal portion of the wall surface, it exhibits a nose-down, tail-up attitude. One or more hydrodynamic surfaces, e.g., a wing or deck surface, is formed on the body to create a vertical force component for maintaining this attitude as the body moves through the water along a wall surface in the wall surface cleaning mode. This attitude facilitates hold down of the traction wheels against the wall surface and properly orients a vacuum inlet opening relative to the wall surface. When in the water surface cleaning mode, a hydrodynamic surface preferably rises above the water surface thereby reducing the aforementioned vertical force component and allowing the body to assume a more horizontally oriented attitude in the water surface cleaning mode. This attitude facilitates movement along the water surface and/or facilitates skimming water from the surface into a debris container.
A preferred cleaner body in accordance with the invention is configured with a hollow front fin extending above the water surface when the body is operating in the water surface cleaning mode. The fin has an interior chamber which can be water filled to provide a downward weight to help stabilize the operating level of the body near the water surface. In the wall surface cleaning mode, the water filled fin has negligible effect when the body is submerged but when the body climbs above the water surface, the weight of the filled fin creates a vertical downward force tending to cause the body to turn and re-enter the water.
A preferred cleaner body in accordance with the inv
Henkin Melvyn L.
Laby Jordan M.
Freilich Hornbaker & Rosen
Prince Fred G.
LandOfFree
Positive pressure automatic swimming pool cleaning system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Positive pressure automatic swimming pool cleaning system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Positive pressure automatic swimming pool cleaning system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3196355