Positive detection lateral-flow apparatus and method for...

Chemistry: analytical and immunological testing – Involving an insoluble carrier for immobilizing immunochemicals

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S007100, C435S007920, C436S514000, C436S541000, C422S051000, C422S051000

Reexamination Certificate

active

06699722

ABSTRACT:

FIELD
The present invention relates to sensitive lateral-flow methods and devices for determining the presence and/or amount of small and large analytes in fluid samples. The present invention provides a direct or positive detection result (i.e. increasing signal with increasing analyte concentration) in a sequential binding format.
BACKGROUND
Analytical tests have been developed for the routine identification or monitoring of physiological and pathological conditions (e.g., pregnancy, cancer, endocrine disorders, infectious diseases) using different biological samples (e.g., urine, serum, plasma, blood, saliva), and for analysis of environmental samples (e.g., natural fluids and industrial plant effluents) for instance for contamination. Many of these tests are based on the highly specific interactions between specific binding pairs. Examples of such binding pairs include antigen/antibody, hapten/antibody, lectin/carbohydrate, apoprotein/cofactor and biotin/(strept)avidin. Furthermore, many of these tests involve devices (e.g., solid phase, lateral-flow test strips, flowthrough tests) with one or more of the members of a binding pair attached to a mobile or immobile solid phase material such as latex beads, glass fibers, glass beads, cellulose strips or nitrocellulose membranes (U.S. Pat. Nos. 4,703,017; 4,743,560; 5,073,484).
Immunochromatographic assays fall into two principal categories: “sandwich” and “competitive.” In general, sandwich immunochromatographic procedures call for mixing the sample that may contain the analyte to be assayed with antibodies to the analyte. These antibodies are mobile and typically are linked to a label or another signaling reagent, such as dyed latex, a colloidal metal sol, or a radioisotope. This mixture is then applied to a chromatographic medium containing a band or zone of immobilized antibodies to the analyte of interest. The chromatographic medium often is in the form of a strip that resembles a dipstick. When the complex of the molecule to be assayed and the labeled antibody reaches the zone of the immobilized antibodies on the chromatographic medium, binding occurs and the bound, labeled antibodies are localized at the zone. This indicates the presence of the molecule to be assayed. This technique can be used to obtain quantitative or semi-quantitative results. Examples of sandwich immunoassays performed on test strips are described in U.S. Pat. Nos. 4,168,146 and 4,366,241, each of which is incorporated herein by reference.
In competitive immunoassays, the label is typically a labeled analyte or analyte analogue that competes with any unlabeled analyte present in the sample for binding to an antibody. In such competitive assays, the analyte and labeled tracer molecule are simultaneously introduced to the binding agent such that these molecules compete for binding sites. Competitive immunoassays are typically used for detection of analytes such as haptens, each hapten being monovalent and capable of binding only one antibody molecule. Examples of competitive immunoassay devices are those disclosed by U.S. Pat. Nos. 4,235,601, 4,442,204 and 5,208,535, each of which is incorporated herein by reference.
Solid phase immunoassay devices, whether sandwich- or competition-type, provide sensitive detection of an analyte in a biological fluid sample. Solid phase immunoassay devices incorporate a solid support to which one member of a ligand-receptor pair, usually an antibody, antigen, or hapten, is bound. Common early forms of solid supports were plates, tubes, or beads of polystyrene, which were known from the fields of radioimmunoassay and enzyme immunoassay. More recently, a number of porous materials such as nylon, nitrocellulose, cellulose acetate, glass fibers, and other porous polymers have been employed as solid supports.
In the more common forms of dipstick assays, as typified by home pregnancy and ovulation detection kits, immunochemical components such as antibodies are bound to a solid phase. The assay device is “dipped” for incubation into a sample suspected of containing the subject analyte. Enzyme-labeled antibody is then added, either simultaneously or after an incubation period. The device next is washed and then inserted into a second solution containing a substrate for the enzyme. The enzyme-label, if present, interacts with the substrate, causing the formation of colored products, which either deposit as a precipitate onto the solid phase or produce a visible color change in the substrate solution. EP-A 0 125 118 discloses such a sandwich type dipstick immunoassay. EP-A 0 282 192 discloses a dipstick device for use in competition type assays.
Flow-through type immunoassay devices (such as test strips) were designed to obviate the need for incubation and washing steps associated with dipstick assays. U.S. Pat. No. 4,632,901 discloses a sandwich immunoassay device wherein antibody (specific to a target antigen analyte) is bound to a porous membrane or filter to which a liquid sample is added. As the liquid flows through the membrane, target analyte binds to the antibody. The addition of sample is followed by addition of labeled antibody. The visual detection of labeled antibody provides an indication of the presence of target antigen analyte in the sample.
Migration assay devices usually incorporate within them reagents that have been attached to colored labels, thereby permitting visible detection of the assay results without addition of further substances. See, for example, U.S. Pat. No. 4,770,853; WO 88/08534; and EP-A 0 299 428.
There are a number of commercially available lateral-flow type tests and patents disclosing methods for the detection of large analytes (MW greater than 1,000 Daltons). U.S. Pat. No. 5,229,073 describes a semiquantitative competitive immunoassay lateral flow method for measuring plasma lipoprotein levels. This method utilizes a plurality of capture zones or lines containing immobilized antibodies to bind both the labeled and free lipoprotein to give a semi-quantitative result.
U.S. Pat. No. 5,591,645 provides a chromatographic test strip with at least two portions. The first portion includes a movable tracer and the second portion includes an immobilized binder capable of binding to the analyte. Additional examples of lateral-flow tests for large analytes are disclosed in the following patent documents: U.S. Pat. Nos. 4,168,146; 4,366,241; 4,855,240; 4,861,711; 5,120,643; European Patent No. 0296724; WO 97/06439; and WO 98/36278.
There are also a limited number of lateral-flow type tests for the detection of small-analytes (MW 100-1,000 Daltons). Generally, these small analyte tests involve “typical” competitive inhibition to produce negative or indirect reporting results (i.e., reduction of signal with increasing analyte concentration), as exemplified by U.S. Pat. No. 4,703,017.
Several approaches have been developed for detecting small analytes using lateral-flow tests that produce positive or direct reporting results (i.e., increase in signal with increasing analyte concentration). These include, for instance, U.S. Pat. Nos. 5,451,504; 5,451,507; 5,798,273; and 6,001,658.
U.S. Pat. No. 5,451,504 provides a method with three specific zones (mobilization, trap and detection) each containing a different latex conjugate to yield a positive signal. The mobilization zone contains labeled antibody to bind the analyte in the sample. In the trap zone, unbound, labeled antibody is then trapped by immobilized analyte analog. The detection zone captures the labeled analyte-antibody complex. A disadvantage of this method is that the analyte-analog in the trap zone competes with the labeled analyte-antibody complex formed during migration and may cause false negative results.
U.S. Pat. No. 5,451,507 describes a two-zone, disconnected immunochromatographic method. The first zone has non-diffusively bound reagent that binds with a component, e.g., an analyte analog bound to, or capable of becoming bound to, a member of a signal producing system. The second zone binds to the component only when the analyte to

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Positive detection lateral-flow apparatus and method for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Positive detection lateral-flow apparatus and method for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Positive detection lateral-flow apparatus and method for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3216475

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.