Surgery – Diagnostic testing – Sampling nonliquid body material
Reexamination Certificate
2001-04-17
2003-05-06
Hepperle, Stephen M. (Department: 3753)
Surgery
Diagnostic testing
Sampling nonliquid body material
C606S130000, C606S167000
Reexamination Certificate
active
06558337
ABSTRACT:
FIELD OF THE INVENTION
This disclosure generally concerns apparata used to center or otherwise position medical devices with respect to the human body during medical procedures, and more specifically concerns such positioning apparata which are sized and configured to allow their use within close spatial confines, e.g., within the interior of a magnetic resonance imaging (MRI) device.
BACKGROUND OF THE INVENTION
It is often necessary to position a medical device, such as a biopsy needle, adjacent to a portion of the human body during a medical imaging procedure, such as magnetic resonance imaging (MRI). Using MRI as an example, doctors are now commonly using MRI to locate breast tumors for biopsy prior to surgery. The current process uses a clamp which holds the patient's breast in place while the MRI scan is done. Once the breast (and the tumor therein) is imaged, the patient is removed from the MRI machine and the tumor's coordinates within the breast are calculated from the MRI scan. Medical personnel then make use of a positioning device, generally some form of linkage which bears a mount capable of holding a medical device or pointer, and which may position the device/pointer in two or more dimensions. The positioning device is situated adjacent to the breast and its device mount is manually aligned with the tumor to the best of the aligner's ability. The patient is then put back into the MRI device and re-scanned to see if the device mount of the positioner is properly aligned with respect to the tumor. If misaligned, the patient is withdrawn, the positioner is adjusted to more accurately align the device mount with the tumor, and the patient is scanned again. The process is repeated until the positioner has the mount accurately aligned with the tumor. A needle is then placed in the aligned device mount to penetrate the tumor. Often, the process requires four or five iterations of aligning the positioner's device mount with the tumor, with these iterations taking over an hour to perform.
An exemplary positioner of the type noted above is marketed by MRI Devices of Waukesha, Wis. (USA). This positioner utilizes a breast clamp defined by parallel plates having variable spacing so that the plates can be moved to engage the breast. One of the plates has an arch-like shape so that the portion of the plate surrounding the inner curve of the arch holds the breast in place, but a portion of the breast is left exposed within the curve of the arch. The clamp is situated on a positioner base which also bears a sliding carriage. The sliding carriage may be manually situated at a selected position along a path situated parallel to the arched plate of the clamp. The carriage bears a vertical arm which extends perpendicular to the carriage path and parallel to the arched plate. A medical device mount is slidably mounted on the arm so that the mount (and any medical device therein) may be manually positioned vertically on the arm, while the arm's carriage may be horizontally located at a desired position. Thus, medical personnel may manually situate the medical device in 2 degrees of freedom, within a plane oriented parallel to the arched plate, and therefore with respect to the portion of the human body maintained within the clamp.
While the positioner works well in the procedure noted above, the iterative procedure for locating the device mount with respect to the tumor requires significant personnel time and equipment time, making the procedure expensive. Additionally, the time required for the procedure adds to the patient's fear and discomfort, since the patient's body is maintained in the clamp for a substantial period of time as the patient awaits a potentially painful procedure. Therefore, there is a need for a positioner which allows faster tumor location procedures than those provided by prior positioners.
SUMMARY OF THE INVENTION
The invention involves a positioner for medical devices which is intended to at least partially solve the aforementioned problems. To give the reader a basic understanding of some of the advantageous features of the invention, following is a brief summary of a preferred version of the positioner. As this is merely a summary, it should be understood that more details regarding the preferred version may be found in the Detailed Description set forth elsewhere in this document. The claims set forth at the end of this document then define the various versions of the invention in which exclusive rights are secured.
An exemplary positioner (as illustrated in the accompanying Figures) includes a clamp (element
16
in conjunction with elements
18
and
20
) for a selected portion of a human body (e.g., a breast); a carriage (element
22
) which moves along a carriage path (element
24
) next to the clamp, and a positioning arm (element
26
) pivotally mounted to the carriage and having a mount (element
30
in
FIG. 1
) for a medical device thereon. The carriage may therefore carry the positioning arm along the carriage path to a desired location adjacent to the clamp, at which point the positioning arm may be pivoted to situate a medical device (e.g., a biopsy needle) within the device mount to a desired location adjacent the portion of the body within the clamp. The components of the positioner are preferably made of materials that do not interfere with medical imaging instrumentation such as MRI scanners. However, the positioner may include markers at desired locations, such as within the device mount or on the positioning arm adjacent the device mount, which are visible by the imaging instrumentation so that the location of the medical device may be ascertained during imaging.
The clamp includes two or more grasping elements with adjustable spacing so that some or all of the grasping elements can be brought to bear upon the portion of the human body to be subjected to the medical and/or imaging procedure. As an example, the clamp may include first and second grasping elements, such as a pair of plates (one being shown at element
16
and the other being defined by elements
18
and
20
in conjunction), wherein the second grasping element is movable toward the first grasping element along a grasping direction to secure the extremity between the elements. The first grasping element, which preferably remains fixed in a plane adjacent to the carriage path, may include first and second members (
18
and
20
) which are repositionable within that plane so that the spacing between the members can be varied, thereby effectively defining a gap within the first grasping element with the gap having variable spacing. Thus, when the extremity is grasped between the first and second grasping elements, the first grasping element's first and second members can be spaced so as to comfortably grasp the extremity while leaving the gap between the members through which the extremity may be accessed. Thus, a medical device borne on the carriage to a location adjacent the first grasping element can access the extremity through the gap. In the preferred version of the invention shown in the Figures, the first grasping element includes members provided in the form of a pair of bars carried within tracks at their opposing ends so that the bars may be slidably repositioned with respect to each other, and the second grasping element is a plate which is carried towards the bars on one or more tracks (e.g., screw drives) which maintain the second grasping element in the same orientation as it moves towards the bars (as by maintaining the second grasping element parallel to a plane defined by the first and second bars).
The carriage may be provided in the form of a plate which translates along a carriage path defined by a track or other structure located adjacent to the clamp. Preferably, where the clamp is formed of a pair of grasping elements which fit about the extremity, the carriage translates along a carriage path which is oriented perpendicular to the grasping direction (the direction in which the grasping elements travel to grasp th
Andrae William Christopher
Dvorak Eric Maitland
Fronczak Frank J.
Kelcz Frederick
Kolterman Justin Edward
DeWitt Ross & Stevens S.C.
Frieschko, Esq. Craig A.
Hepperle Stephen M.
Wisconsin Alumni Research Foundation
LandOfFree
Positioner for medical devices such as biopsy needles does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Positioner for medical devices such as biopsy needles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Positioner for medical devices such as biopsy needles will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3093526