Positional control system and positional control method

Data processing: generic control systems or specific application – Generic control system – apparatus or process – Digital positioning

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S057000, C700S186000, C700S189000, C318S561000, C318S568150, C318S569000, C318S573000, C318S600000, C318S638000

Reexamination Certificate

active

06738679

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a system and method for controlling a position in a controlled object in a mechanical equipment, such as a numerical controlled (NC) machine tool.
2. Description of Related Art
A position control in a controlled object, such as a work table and a work cutter in a NC machine tool is, in general, done by controlling a rotating amount of a servomotor connected to the controlled object via a transmission mechanism, which is, for example, constructed by a rack-and-pinion mechanism or a ball screw-and-nut mechanism.
A positional control in a controlled object, of a semi-closed-loop type, a full-closed-loop type and a hybrid control type is known.
In the semi-closed-loop positional control, a servo control system is constructed such that a detection of a rotating position of a servomotor is done by, for example, using a detector such as a rotary encoder. The detected rotating position of the servomotor is, then, transformed into a position of the controlled object. The transformed rotating position is, finally, subjected to a feedback to a positional command for controlling a rotating amount of the servomotor.
In the full-closed-loop positional control, a servo control system is constructed such that a linear type measuring scale is, for example, directly connected to a controlled object such as a table. The position of the controlled object as detected by the linear type measuring scale is subjected to a feedback to a positional command for controlling the rotating amount of the servomotor.
In the hybrid control positional control, a servo control system is constructed such that a rotating position of a servomotor and a position of the controlled object are both detected. A rotating position of the servomotor transformed to the position of the controlled object is subjected to a feedback to the positional command while a difference between a position of the controlled object and the transformed rotating position of the servomotor is, first, subjected to a filtering by a first order lag filter and is, then, subjected to a feedback to the positional command.
When a non-linear characteristic such as a backlash or a friction exists in a transmission mechanism arranged between the servomotor and the controlled object, a phenomenon is generated, wherein a switching of the direction of the movement of the controlled object causes the servomotor to be moved, while the controlled object is maintained to be unmoved. Such a phenomenon is called as a lost motion, by which the controlled object is not able to respond quickly to the positional command.
A method for correcting the tracking error is known, which is called as a back lash correction, wherein, upon a detection of the switching in the direction of the movement in the positional command, a correction in the control command to the servomotor is done, so that the lost motion is quickly removed, thereby restricting the response error from the positional command in the controlled object.
In the above mentioned semi-closed-loop positional control, the position of the controlled object is indirectly obtained from the rotating position of the servomotor, i.e., a direct control is not done. As a result, a backlash correction does not cause any offset to be generated in the controlled object.
Contrary to this, in the above mentioned full-closed-loop positional control, an execution of the above mentioned a backlash correction during a reversal in a feedback value as obtained by the linear scale causes an offset to be generated in the position of the controlled object due to the fact that a positional information of the controlled object is also corrected.
As far as the hybrid control type is concerned, not only a feedback value from the linear scale but also a feed back value of a servomotor are used. Therefore, an occurrence of the offset in the controlled position of the controlled object is prevented by executing a correction of the feedback value.
However, in the hybrid control positional control, a control is done in such a manner that a coincidence is obtained between the target position and the detected position of the linear scale. As a result, even a small change of a feedback value of the position of the controlled object as obtained by the linear scale in a direction opposite to the direction of occurrence of the lost motion causes the servomotor to move the controlled object beyond the range of the lost motion irrespective of a fact that the positional command is unchanged. A stoppage of the controlled object is obtained when the coincidence between the feedback value of the position of the controlled object and the positional command is obtained, thereby canceling the lost motion. A detection of the reversal in the moved direction of the positional command from this condition causes, however, a phenomenon to be generated, wherein a momental deviation of the controlled object from the target position is generated due to the operation of the backlash correction device. In a system where the control object is moved along an arc shaped pass by employing a orthogonal double axis control, the above-mentioned phenomenon may cause a difficulty to be occurred such that a trajectory of the controlled object is deviated inwardly from the desired arc shaped pass at so-called quadrant switching points.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a position control system and method of a type wherein a position of a controlled object is directly detected and is subjected to a feedback operation for controlling the position of the controlled object, capable of overcoming the above mentioned difficulties in the prior art.
Another object of the present invention is to provide a position control system and method of the above type, capable of restricting a tracking error in the controlled object as generated upon a reversal in the direction of the feed of the controlled object.
Still another object the present invention is to provide a position control system and method of the above type, capable of preventing any offset from being generated in controlled position of the controlled object.
According to the first aspect of the present invention, there is provided a positional control system comprising: a controlled object: driving means connected to the controlled object; setting means for setting a variable target or desired position of the controlled object; a control command generating means for generating a control command in accordance with said variable target position; a position sensor arranged on said controlled object for detecting a position of the controlled object; a deviation generating means for generating a deviation from said control command and a detected position of the controlled object; a serve control means for generating, in accordance with the deviation, a manipulated variable issued to said driving means for causing said controlled object to follow said variable target position; and, a tracking error correction means operated in a period which is commenced when a direction in the feed in the variable target position is reversed and when the controlled objected is stopped and which is ceased when the movement of the controlled object is re-started, for correcting the deviation, so that a tracking error of said controlled object with respect to said variable target position as generated by said reversal in the direction of the feed is restricted.
Preferably, said tracking error correction means comprise: a reversal detector part detecting a reversal in direction of feed; a movement/stoppage detector part for detecting if the controlled object is moved or stopped; and, a tracking error correcting part for issuing a correcting amount for correcting said deviation in accordance with signals from said reversal detector and said movement/stoppage detector.
Preferably, said tracking error correcting part holds, in accordance with the direction of the reverse of the feed, a first and second correction amounts of opposed

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Positional control system and positional control method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Positional control system and positional control method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Positional control system and positional control method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3268518

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.