Computer graphics processing and selective visual display system – Display peripheral interface input device – Cursor mark position control device
Reexamination Certificate
2000-05-15
2004-03-09
Shalwala, Bipin (Department: 2673)
Computer graphics processing and selective visual display system
Display peripheral interface input device
Cursor mark position control device
C463S038000
Reexamination Certificate
active
06704002
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates generally to interface devices between humans and computers, and more particularly to computer interface devices that provide force feedback to the user.
Interface devices are used extensively with computer systems in the implementation of computer-controlled games, simulations, and other applications very popular with the mass market of home consumers. In a typical implementation, a computer system displays a visual environment to a user on a display device. Users can interact with the displayed environment by inputting commands or data from the interface device. Popular interface devices include joysticks, “joypad” button controllers, mice, trackballs, styluses, tablets, pressure spheres, foot or hand pedals, or the like, that are connected to the computer system controlling the displayed environment. The computer updates the environment in response to the user's manipulation of a moved manipulandum such as a joystick handle or mouse, and provides visual feedback to the user using the display screen.
In some interface devices, haptic (e.g., tactile) feedback is also provided to the user, more generally known as “force feedback.” These types of interface devices can provide physical sensations to the user manipulating the physical object of the interface device. Typically, motors or other actuators of the interface device are coupled to the manipulandum and are connected to the controlling computer system. The computer system receives sensor signals from the interface device and sends appropriate force feedback control signals to the actuators in conjunction with host events. The actuators then provide forces on the manipulandum. A local microprocessor can be used to offload some computational burden on the host. The computer system can thus convey physical sensations to the user in conjunction with other visual and auditory feedback as the user is contacting the manipulandum. Commercially available force feedback devices include the ForceFX joystick from CH Products, Inc. and Immersion Corporation, and the Sidewinder Force Feedback Pro from Microsoft Corporation.
One problem occurring in providing commercially available force feedback devices with realistic forces is providing a low cost device. Such components as belt drive transmissions can be used to reduce manufacturing costs. However, one problem occurring with many types of belt drives is that an amount of compliance or backlash is typically inherent in the system caused by the flexibility or stretching of the belts. Other types of transmissions also may introduce compliance into a system, as well as various types of linkages or gimbal mechanisms which provide the degrees of freedom to the manipulandum of the force feedback device. The compliance can also be derived from plastic or other flexible components used in low-cost devices.
The compliance and backlash in a force feedback mechanical system can cause problems in accurately sensing the position of the manipulandum. This can be a particular problem in those systems having significant compliance between the manipulandum and the sensor. The user may have moved the manipulandum a small distance, but due to the compliance this change, in position is only partially detected or not detected at all by the sensor, or is detected too long after the event for the device to provide meaningful forces in reaction to the change in position. This is especially of concern when the position sensor is rigidly coupled to the actuator to sense motion by sensing rotation or movement of the actuator shaft (and where the manipulandum is compliant-coupled to the sensor), as is commonly done in force feedback devices to provide greater sensing resolution with a given sensor and to provide more stable control of the device.
Another problem involved with inaccurate position reporting in a force feedback device is related to sensing the position of the manipulandum near the limits to provided degrees of freedom. For example, force feedback devices typically provide hard stops to limit the motion of the manipulandum to a constrained range. Due to compliance in the mechanical and/or drive system, the problem of sensing the position of the manipulandum is exacerbated at the hard stops. For example, when the user moves the manipulandum fast against the hard stop, the compliance in the system may allow further motion past the hard stop to be sensed by the sensor due to compliance and inertia. However, when the manipulandum is moved slowly, the inertia is not as strong, and the sensor may not read as much extra motion past the hard stop. These two situations can cause problems in sensing an accurate position consistently.
Yet another problem with position sensing can occur upon startup of a force feedback device. If a device uses relative or incremental sensors, as many force feedback devices do, then a controlling microprocessor or host computer does not immediately know the starting position of the manipulandum when the device is first powered. This can cause problems when defining a range of motion for the manipulandum. The assumption that the manipulandum is at the center of the full range of motion can cause problems since the startup position may actually be very close to or at a limit such as a hard stop, and the manipulandum cannot be moved very far before this limit is reached even though the controller expects a much larger range of motion. Dynamic calibration can be used, where the range of the device is considered nominal at startup and is gradually increased as the sensors detect the manipulandum at ever-increasing ranges. However, a problem can exist for force feedback devices that provide this type of dynamic calibration and which use a software centering spring upon startup, which is not a physical spring but a spring if force controlled by the device and output by the actuators which centers the manipulandum in its range of motion. If the range of the manipulandum is made small and then allowed to increase, then the default spring at startup will cause instability in the device, i.e., the manipulandum will oscillate due to the device sensing tiny motions as large motions within the small range, which causes the effective gain of the control loop to be too high for the position range.
SUMMARY OF THE INVENTION
The present invention provides improvements in the sensing of position of a manipulandum of a force feedback device. The features of the present invention are useful for more accurately sensing manipulandum position of a force feedback device that includes compliance in its mechanical systems, and for calibrating a force feedback device having relative sensors.
More particularly, one aspect of the present invention compensates for sensing inaccuracies contributed to by compliance in the mechanical systems of a force feedback device is provided. The force feedback device is coupled to a host computer and includes at least one actuator for outputting forces and a sensor. A raw sensor value of a position of a manipulandum of the force feedback device is read in a range of motion of the manipulandum, the manipulandum, such as a joystick handle, being grasped by a user. The raw sensor value is adjusted based on a compliance of the force feedback device between sensor and manipulandum, where the adjustment compensates for the compliance to provide a more accurate position of the manipulandum. The adjusted sensor value is used as the position of the manipulandum when, for example, updating an application program implemented by the host computer. Preferably, a microprocessor local to the force feedback device adjusts the sensor value and reports the adjusted sensor value to the host computer.
The adjusting of the raw sensor value preferably includes adjusting the raw sensor value based on a compliance constant and a current output force, where the compliance constant has been previously determined. When the force feedback device performs the adjustment, the adjusted sensor value is reported to the host computer as the pos
Braun Adam C.
Bruneau Ryan D.
Martin Kenneth M.
Immersion Corporation
Kilpatrick & Stockton LLP
Piziali Jeff
Shalwala Bipin
LandOfFree
Position sensing methods for interface devices does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Position sensing methods for interface devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Position sensing methods for interface devices will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3242854