Position measuring device and error detecting method for the...

Electricity: measuring and testing – Magnetic – Displacement

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S207240, C324S500000, C340S870320, C702S058000

Reexamination Certificate

active

06636035

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a position measuring device, and an error detecting method for the device, and more particularly to reduction of the power consumption of a position measuring device which detects displacement between two members.
The present invention relates also to an electromagnetic induction position detecting device which detects a relative position of two members with using electromagnetic coupling between the members, and more particularly to a method of detecting a fault such as a breakage of a coil.
2. Description of the Related Art
Measurement instruments such as an electronic caliper are widely used for measuring the thickness or other physical dimensions of an object in the manufacturing industry. A transducer is used as the principal component of such a measurement instrument.
Known transducers include a capacitive transducer and an inductive transducer. In the capacitive transducer, a transmitter electrode and a receiver electrode are disposed on a grid (slider), and signal electrode is disposed on a scale which is opposed to the grid. The transmitter and receiver electrodes on the grid are capacitively coupled with the signal electrode on the scale. A driving signal is supplied to the transmitter electrode, and a detection signal, which appears in the receiver electrode in accordance with the relative position between the grid and the scale, is processed by a signal processing circuit, thereby detecting the movement or position of the grid with respect to the scale.
On the other hand, in the inductive transducer, the relative position is detected on the basis of electromagnetic induction between a grid and a scale. For example, an exciting coil is disposed in the grid to generate a magnetic flux, thereby causing an induced current to be generated in a scale coil. The induced current generates a magnetic flux, so that an induced current (induced voltage) is generated in a detection coil disposed in the grid. The induced voltage generated in the detection coil is changed in accordance with relative displacement between the grid and the scale, and hence the displacement can be detected based on an induced-voltage signal.
In a measurement instrument of the related art, in order to ensure that the transducer surely operates, a CPU monitors a signal from the transducer at each sampling timing to judge whether the transducer is normal or not.
In the configuration in which the CPU is operated at each sampling timing to perform error detection for judging whether the transducer is normal or not, however, the power consumption is increased. When a battery is used as the power source, for example, there arises a problem in that the lifetime of the battery is shortened.
In the case where an inductive transducer is used, particularly, there is an advantage that the transducer is operable even in an environment of higher pollution as compared with the case where a capacitive transducer is used. However, the inductive transducer has a problem that the power consumption is large. Therefore, the above-mentioned increase of the power consumption: is not preferable.
In an electromagnetic induction position detecting device of the related art which uses electromagnetic coupling between a detection head (first member) and a scale (second member), the relative position of the scale with respect to the detection head is detected on the basis of electromagnetic induction between the detection head and the scale. More specifically, the electromagnetic induction position detecting device is configured by: the detection head in which a driving coil and a receiving coil are disposed; and the scale relatively moved with respect to the detection head in which magnetic modulating means such as closed loop coils is disposed. The magnetic modulating means modulates the magnetic flux generated by the driving coil. A primary changing magnetic flux which is generated when the driving coil is AC-driven is modulated by the scale, so that a magnetic pattern of a predetermined period is formed. The magnetic pattern is coupled with the receiving coil of the detection head. As a result, an induced voltage which is varied in accordance with movement of the scale appears in the receiving coil. When variations of the induced voltage are detected, it is possible to detect the relative movement distance of the scale with respect to the detection head. Alternatively, an absolute position detection is enabled in such a manner that a plurality of position detection tracks, in which magnetic patterns are formed in different periods, are disposed, the induced voltages are respectively detected by receiving coils of the tracks, and a phase difference between the induced voltages of the tracks is detected.
However, in the electromagnetic induction position detecting device, malfunction caused by coil breakage cannot be detected, and there is no means for, when the position is erroneously detected, informing the operator of the erroneous detection. Furthermore, it is difficult to stably and surely detect malfunction caused by breakage of the scale coil because a change due to such malfunction is very small in level.
SUMMARY OF THE INVENTION
It is a first object of the invention to provide a position measuring device and an error detecting method for the device, in which an error of a transducer can be detected at a low power consumption.
It is a second object of the invention to provide an electromagnetic induction position detecting device in which occurrence of a fault such as a breakage of a coil can be detected stably and surely, thereby enabling correct position detection to be performed.
In order to attain the first object, the position measuring device for detecting displacement between two members, according to the invention, comprises: a transducer which outputs an electric signal based on displacement between the two members; and a detecting section which, when a relative speed between the two members is equal to or smaller than a predetermined value, performs detection of malfunction of the transducer. In the device, detection of malfunction (error detection) of the transducer is performed not at a predetermined time interval, but at a timing when the relative speed is equal to or smaller than the predetermined value. Therefore, power consumption due to the detection of malfunction can be reduced.
Preferably, the detection of malfunction may be performed when the relative speed between the two members is zero. In the case where the relative speed is zero, it is particularly necessary to accurately detect the position. When the detection of malfunction of the transducer is performed at that position, therefore, the detection of malfunction can be efficiently performed, and the accuracy of the detection of position can be ensured.
For example, the transducer may be an inductive transducer. An inductive transducer itself consumes a relatively large power. When the power consumption due to the detection of malfunction is reduced, therefore, the ease of use of the inductive transducer is improved. In the case where the transducer is powered by a battery, the lifetime of the battery can be prolonged.
Alternatively, the transducer may be a transducer of an absolute, type electronic caliper which detects displacement from a predetermined reference position, i.e., the absolute position. In an incremental type electronic caliper, the displacement amount is sequentially detected. By contrast, in the absolute type electronic caliper, it is often that the absolute position of a grid is measured while the grid is made still with respect to a scale. When the detection of malfunction of the transducer is performed in the case where the relative speed of the grid is equal to or smaller than a predetermined value, or where the relative speed is zero, therefore, the timing of the position detection can be synchronized with that of the detection of malfunction, and hence the process can be efficiently conducted.
Preferably, the detecting section may dete

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Position measuring device and error detecting method for the... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Position measuring device and error detecting method for the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Position measuring device and error detecting method for the... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3151226

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.