Position location using broadcast television signals and...

Communications: directive radio wave systems and devices (e.g. – Directive – Position indicating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C342S463000

Reexamination Certificate

active

06717547

ABSTRACT:

BACKGROUND
The present invention relates generally to position determination, and particularly to position determination using broadcast television signals and mobile telephone signals.
There have long been methods of two-dimensional latitude/longitude position location systems using radio signals. In wide usage have been terrestrial systems such as Loran C and Omega, and a satellite-based system known as Transit. Another satellite-based system enjoying increased popularity is the Global Positioning System (GPS).
Initially devised in 1974, GPS is widely used for position location, navigation, survey, and time transfer. The GPS system is based on a constellation of 24 on-orbit satellites in sub-synchronous 12 hour orbits. Each satellite carries a precision clock and transmits a pseudo-noise signal, which can be precisely tracked to determine pseudo-range. By tracking 4 or more satellites, one can determine precise position in three dimensions in real time, world-wide. More details are provided in B. W. Parkinson and J. J. Spilker, Jr., Global Positioning System-Theory and Applications, Volumes I and II, AIAA, Washington, D.C. 1996.
GPS has revolutionized the technology of navigation and position location. However in some situations, GPS is less effective. Because the GPS signals are transmitted at relatively low power levels (less than 100 watts) and over great distances, the received signal strength is relatively weak (on the order of −160 dBw as received by an omni-directional antenna). Thus the signal is marginally useful or not useful at all in the presence of blockage or inside a building.
There has even been a proposed system using conventional analog National Television System Committee (NTSC) television signals to determine position. This proposal is found in a U.S. Patent entitled “Location Determination System And Method Using Television Broadcast Signals,” U.S. Pat. No. 5,510,801, issued Apr. 23, 1996. However, the present analog TV signal contains horizontal and vertical synchronization pulses intended for relatively crude synchronization of the TV set sweep circuitry. Further, in 2006 the Federal Communication Commission (FCC) will consider turning off NTSC transmitters and reassigning that valuable spectrum so that it can be auctioned for other purposes deemed more valuable.
SUMMARY
In general, in one aspect, the invention features a method, apparatus, and computer-readable media for determining the position of a user terminal. It comprises receiving at the user terminal a broadcast television signal from a television signal transmitter; determining a first pseudo-range between the user terminal and the television signal transmitter based on a known component of the broadcast television signal; receiving at the user terminal a mobile telephone signal from a mobile telephone base station; determining a second pseudo-range between the user terminal and the mobile telephone base station based on a known component of the mobile telephone signal; and determining a position of the user terminal based on the first and second pseudo-ranges, a location of the television signal transmitter, and a location of the mobile telephone base station.
Particular implementations can include one or more of the following features. The mobile telephone signal is a Global System for Mobile Communications (GSM) signal. The known component of the mobile telephone signal is a training sequence. The broadcast television signal is selected from the group comprising an American Television Standards Committee (ATSC) digital television signal; a European Telecommunications Standards Institute (ETSI) Digital Video Broadcasting-Terrestrial (DVB-T) signal; a Japanese Integrated Services Digital Broadcasting-Terrestrial (ISDB-T) signal; and an analog television signal. The mobile telephone signal is a Code-Division Multiple Access (CDMA) signal. The known component of the mobile telephone signal is an unmodulated PN sequence. Implementations can comprise receiving at the user terminal a global positioning signal from a global positioning satellite; determining a third pseudo-range between the user terminal and the global positioning satellite based on the global positioning signal; and determining a position of the user terminal based on the first, second and third pseudo-ranges, a location of the television signal transmitter, a location of the mobile telephone base station, and a location of the global positioning satellite.
In general, in one aspect, the invention features a method, apparatus, and computer-readable media for determining the position of a user terminal. It comprises receiving at the user terminal a broadcast television signal from a television signal transmitter; determining a pseudo-range between the user terminal and the television signal transmitter based on a known component of the broadcast television signal; receiving at the user terminal a mobile telephone signal from a mobile telephone base station, the mobile telephone signal comprising a range signal; determining a range between the user terminal and the mobile telephone base station based on the range signal; and determining a position of the user terminal based on the pseudo-range, the range, a location of the television signal transmitter, and a location of the mobile telephone base station.
Particular implementations can include one or more of the following features. The mobile telephone signal is a Global System for Mobile Communications (GSM) signal, and the range signal comprises a timing advance parameter. The broadcast television signal is selected from the group comprising an American Television Standards Committee (ATSC) digital television signal; a European Telecommunications Standards Institute (ETSI) Digital Video Broadcasting-Terrestrial (DVB-T) signal; a Japanese Integrated Services Digital Broadcasting-Terrestrial (ISDB-T) signal; and an analog television signal. Implementations can comprise determining a second pseudo-range between the user terminal and the mobile telephone base station based on a known component of the mobile telephone signal; and determining a position of the user terminal based on the first and second pseudo-ranges, the range, a location of the television signal transmitter, and a location of the mobile telephone base station. The known component of the mobile telephone signal is a training sequence. Implementations can comprise receiving at the user terminal a global positioning signal from a global positioning satellite; determining a third pseudo-range between the user terminal and the global positioning satellite based on the global positioning signal; and determining a position of the user terminal based on the first, second and third pseudo-ranges, the range, a location of the television signal transmitter, a location of the mobile telephone base station, and a location of the global positioning satellite. Implementations can comprise receiving at the user terminal a global positioning signal from a global positioning satellite; determining a second pseudo-range between the user terminal and the global positioning satellite based on the global positioning signal; and determining a position of the user terminal based on the first and second pseudo-ranges, the range, a location of the television signal transmitter, a location of the mobile telephone base station, and a location of the global positioning satellite.
In general, in one aspect, the invention features a method, apparatus, and computer-readable media for determining the position of a user terminal. It comprises receiving at the user terminal a broadcast television signal from a television signal transmitter; determining a first pseudo-range between the user terminal and the television signal transmitter based on a known component of the broadcast television signal; receiving at the user terminal a mobile telephone signal from a mobile telephone base station; determining a second pseudo-range between the user terminal and the mobile telephone base station based on a known component of the mobile telephone signal;

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Position location using broadcast television signals and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Position location using broadcast television signals and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Position location using broadcast television signals and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3233279

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.