Portable water treatment facility

Liquid purification or separation – With alarm – indicator – register – recorder – signal or... – Fluid pressure responsive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S103000, C210S143000, C210S241000, C210S257200

Reexamination Certificate

active

06228255

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to a water treatment facility and more particularly to a water treatment facility that is portable and securable.
It will be appreciated by those skilled in the art that water treatment facilities are needed in various fields. One key field is in hemodialysis. Simply put, hemodialysis aids a patient whose body is incapable of filtering the blood. At hemodialysis centers, the prior art has used stationary and fixtured facilities to filter the water necessary to the purity necessary for hemodialysis machines. These water treatment facilities typically consume 400 square feet or more of clinic space. These facilities are attached as fixtures and become permanent parts of the building. Unfortunately, these water treatment facilities are typically located in unsecured spaces with no measures to prevent tampering.
The fact that these water treatment facilities are fixtures means that once placed into a hemodialysis center, they can not be easily removed. Additionally, from a tax consequence, these items are treated as fixtures as opposed to personal property.
Because of the sheer size of the systems and the manner in which they have been piped, if an element goes out, the system can have a significant down time.
Additionally, the sheer size of these systems creates large areas for bacteria growth and the potential for “dead legs.” Dead legs are zones or segments of piping where fluids remain quiescent (limited circulation) either continuously or intermittently. Dead legs are typically defined as dead end piping terminations or cavities that are longer than six (6) pipe diameters from the active piping. Dead legs can provide locations for bacteria to breed, increasing the concentration of pyrogens and endotoxins in the water supply. Additionally, current systems are assembled using solvent welded joints which require special assembly, cleaning and flushing procedures.
Smaller, portable systems have been described. However, these systems are not designed for use in a dialysis clinic, where a volume of water must be purified sufficiently to be used in multiple dialysis machines. U.S. Pat. No. 5,591,344 to Kenley, et al., describes a portable reverse osmosis system for use in a home or a room in a convalescent center. The system is part of a portable dialysis unit, and is made of components which can withstand heat disinfection. Hot and cold water are mixed to a temperature appropriate for use in a dialysis machine. Sensors detect abnormalities in the system, and operation is described on a visual display with touch screen. However, the system described consists of two subunits—a water pretreatment subunit fitted under a bathroom or kitchen sink, and a water treatment subunit which comprises part of the portable dialysis machine module. Sampling ports are described, but these ports are located at various points within the system, and samples must be taken using a syringe in order to avoid contaminating the system. Sampling is not (lone from a single location, where ports are accessible from outside the system, while other components remain inaccessible and resistant to tampering. The system must be exposed for sampling, and therefore potential tampering may occur during the sampling process.
The system described by of Kenley, et al., also constitutes a system for individual use rather than describing a portable system capable of providing water for a number of dialysis machines within a dialysis clinic.
U.S. Pat. No. 5,244,579 to Horner, et al., also describes a portable reverse osmosis system for the purification of water. However, this system is designed to purify water to a portable drinking water level and not to a level of purity appropriate for hemodialysis. The system output is described as no more than 20 gallons per minute. Fluid connections between components of the systems described by Horner and Kenley are relatively fixed. At best, they may be heat disinfected, as described by Kenley.
Previous inventions, such as U.S. Pat. No. 5,480,565 to Levin, et al., have described heat disinfection of dialysis machines or water treatment units. The size or composition of most systems presently in use for dialysis clinics makes heat disinfection difficult and prohibits the use of heat sterilization techniques. A system with removable and replaceable autoclavable components would provide distinct benefits in a health care setting.
In present systems, fixed pipe and valve configurations require technical operators to follow precise instructions on the turning of flow valves whenever carbon treatment tanks are replaced (typically every 90 days). The complexity and infrequent operation of replacement creates a potential hazard that the setting of valves will permit the changed carbon tanks to be “bypassed,” thereby permitting unsafe levels of chlorine and chloramine to come in contact with patient's blood through artificial kidney dialysis.
What is needed, then, is a system which eliminates tampering or inadvertent positioning of valves leading to bypass of critical water purifying elements. What is needed is a method and design which prevents the operator from operating the system without carbon treatment. This needed system must provide an outer skin or housing which provides “tamper resistant” packaging which may be monitored for tampering. This needed system must reduce the size of a standard water treatment plant by at least one-third thereby allowing economical use of Teflon®, stainless steel, and other more appropriate heat disinfectable or sterilizable but more expensive materials. This needed system must be mobile and fully modular allowing significant reduction in times for service plus allowing depreciation as personal property. This needed system must provide components which can be heat disinfected or sterilized in addition to conventional chemical disinfection. This needed system must minimize dead legs. This needed system must minimize any inefficiencies of design conversions. This needed system must be designed to reduce factors which favor microbiological growth. This needed system must allow the removal and replacement of certain elements with minimal time and expense. This needed system must allow service while in operation. The needed system must, by design, be manufactured to ensure the quality of the system, the efficiency of the process, the reproducibility of the product, and the security of the system. What is needed is a large scale portable system for relief of dialysis treatment needs in disaster areas or parts of the United States and other countries lacking in quality technical personnel. This system must be capable of being remotely and digitally monitored. This system must provide an audit trail for verifying system operation and quality of product and which is remotely monitored. What is needed is a system which allows for easy substitution or addition of water purifying elements such as ultra filters, ultraviolet disinfection lights, or other purifying elements and allows for the easy configuring of system components in series or parallel to achieve greater process reliability through redundancy, improved water quality, and/or greater flow capacity. This needed system is presently lacking in the prior art.
SUMMARY OF THE INVENTION
The present invention discloses a portable water treatment facility. The water treatment facility has housing on castors. The housing fully encloses all the water treatment components and interconnect piping to comprise a water treatment member. The housing has various doors which are locked to make the housing tamper resistant. The housing has an external sampling station which allows a technician at any point in time to sample liquids being provided by the enclosed water treatment system for assay and verification of the water quality at various treatment points against specified values. This system has a modular water treatment member consisting of various filters, tanks, and pumps which are attached to one another by short fluid conduits with valved quic

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Portable water treatment facility does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Portable water treatment facility, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Portable water treatment facility will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2559460

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.