Telephonic communications – Having light wave or ultrasonic link for speech or paging... – Including fiber optic link within telephone network
Reexamination Certificate
1999-05-04
2001-07-10
Pitts, Harold I. (Department: 2876)
Telephonic communications
Having light wave or ultrasonic link for speech or paging...
Including fiber optic link within telephone network
C235S380000, C235S492000
Reexamination Certificate
active
06259769
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to smart card systems and more specifically to portable smart card communication devices for writing information to and/or reading information from a smart card.
2. Background
The term “smart card” is typically used to refer to various types of devices having an embedded integrated circuit for storing information. The reference to “smart cards” within this disclosure includes both contact and non-contact cards (also referred to as proximity cards). Smart card communication devices are used to write information to the card and to read information from the card. Some smart card communication devices may only have the ability to read from or write to the smart card. Therefore, a smart card communication device may be a smart card reader, a smart card writer or both.
Typically, the smart card communication device is connected to a host computer that regulates transactions between the smart card and the smart card communication device. In some systems, however, the host computer may be part of the smart card communication device. Smart card systems may include any number of host computers and communication devices depending on the particular configuration and requirements of the system.
The smart card is a small, usually credit card shaped, device that contains at least a memory device for storing information and a transceiver to communicate with a smart card communication device. The smart card communication device communicates through the transceiver on the smart card to access the stored information. The smart card communication device may simply read the information, load the information into the memory device or modify existing data in the memory device. For example, if the owner of a smart card uses a smart card containing financial information to make a purchase, the smart card communication device can read the information including the owner's identity and the availability of funds. The smart card communication device can also deduct the purchase amount from the available funds if it has writing capabilities. Further, the communication device can store transaction data on the smart card including the time and location of the transaction in addition to the identity of the communication device.
Existing smart cards can be classified as either contact or non-contact smart cards. It is not necessary for non-contact smart cards (also referred to as proximity cards) to physically contact a smart card communication device to exchange data. Proximity cards typically employ modulated radio frequency (RF) field and impedance modulation techniques to transfer data between the proximity card and the proximity card communication device.
Smart cards have a variety of uses and can be utilized in any transaction that involves the exchange of data or information between individuals and an institution. For example, smart cards can be used to store information including medical records, financial information, vehicle maintenance information, pet information, and a variety of other information traditionally printed on paper or plastic or stored on cards having a magnetic stripe or an optical bar code. Smart card technology has been particularly useful in banking systems and other financial transaction systems. For example, smart card technology has been used effectively in mass-transit systems where the stored value on a smart card is decreased by an amount equal to the fare each time the passenger uses the card to gain access to or exits from the mass-transit system. As described above, other information may be stored or modified on the card such as the time and location of transaction.
A wide variety of transactions involving smart cards are performed with a fixed smart card communication device in a location providing adequate communication and power resources for fixed systems. Many transactions, however, may require the use of a portable smart card communication device. For example, in mass-transit systems, a portable smart card communication device is useful in ticketing passengers that are seated on the mass-transit vehicle or on the boarding platform. Passengers may be severely inconvenienced by having to purchase tickets or renew their smart cards at a sales office, especially when trying to board a departing train or bus.
As our society becomes increasingly mobile, demands increase for portable products. Smart card users often would like to check the value remaining on their smart cards while traveling. A user, for example, may wish to determine if there are sufficient funds on a smart card for a return trip while traveling to a destination. Further, a smart card user may wish to update the information while in a mobile environment.
Applications that utilize smart cards as an identification cards may require the use of portable communication devices. For example, if a smart card is used as a driver's license, a police officer may need to access the stored information on the smart card while standing next to the driver's vehicle on a roadway. The driver's license in these applications may include data such as insurance carrier information, vehicle registration information, and past violations in addition to standard information included on a driver's license such as a description of the driver.
Existing portable smart card communication devices have several drawbacks. In one existing portable design, a laptop computer is connected to a smart card transceiver. The different parts of the portable smart card communication device are connected by cables making the smart card communication device cumbersome and difficult to use.
Other conventional portable smart card communication devices are constructed as fully integrated single units. These conventional designs are limited in that the user does not have flexibility in choosing specific features of the device such as the type or size of the display or the style of the keyboard. The processing power of the device may be inadequate for the particular purpose of the smart card user or the user may be forced to pay for processing power that is not needed.
In addition to the use of smart cards, the increased power and reduced size of personal computers has accelerated society's trend to a mobile environment. One type of personal computer that is gaining in popularity is referred to as a personal digital assistant (PDA). PDAs are used for a wide variety of applications. For example, PDAs have been used as personal organizers to store information such as schedules, addresses, and phone numbers. In addition, many PDAs can be used as word processors, calculators or to provide other computer functions. Some PDAs provide communication capabilities and can be used to excess the Internet, establish facsimile transmissions, or provide paging or electronic mail services.
PDA designs incorporate a number of improvements over traditional laptop computers in order to facilitate the portability of the devices. PDAs typically incorporate innovations directed at methods of entering information into the PDA and displaying information to the user. For example, many PDAs have touch sensitive screens that allow a user to quickly and efficiently enter information by touching a stylus to the screen. The PDAs may employ a user friendly graphical user interface such as a Windows™ or Windows™ CE interface. In addition, the user may write messages directly on the screen using the stylus. The image produced may be transmitted via electronic mail or facsimile or may simply be stored in memory. With the advances in handwriting recognition, the PDA can interpret the writing and convert it into a text format. Further, the displays used on PDAs are designed to minimize glare from various angles while providing clear images with a minimum of power consumption. These types of screens can be extremely useful where the user is located in an area where it is difficult to use a keyboard or may want to quickly navigate through a menu of files.
Various types
Carta David R.
Kelly Guy M.
Page Kevin J.
Plum Don P.
Ravenis, II Joseph V J
Brown Martin Haller & McClain
Cubic Corporation
Pitts Harold I.
LandOfFree
Portable smart card communication device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Portable smart card communication device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Portable smart card communication device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2546450