Optics: measuring and testing – Dimension – Volume
Reexamination Certificate
1999-05-26
2002-04-16
Rosenberger, Richard A. (Department: 2877)
Optics: measuring and testing
Dimension
Volume
C356S309000, C250S559380
Reexamination Certificate
active
06373579
ABSTRACT:
FIELD OF THE INVENTION
The method and apparatus of the present invention relate generally to determining the dimensions of an object. More particularly, the apparatus and method of the present invention relate to determining the dimensions of an object using a target having a known dimension and a scanning light beam.
BACKGROUND OF THE INVENTION
A major concern in the freight shipment industry is the individual size of packages and how packages are integrated into a specific carrier container used in shipping. Specifically, packages are shipped by many different modes of transportation including tractor-trailers, air planes, ships, etc. Each of these forms of carrier transportation have capacity limits per shipment and may have different sized carrier containers. As the cost of shipping continues to rise, it becomes more important for freight carriers to evaluate the size of individual packages to determine how to best maximize shipment space in their individual carrier containers used for shipment of the packages.
For example, many manufacturing companies that produce a line of products attempt to standardize their packages and ship packages in bulk form such that capacity of the specific carrier container utilized can be maximized. Further, the cost for shipment can be more easily determined and minimized. Problems occur, however, when the freight carrier is involved with several different customers all of which have different sized packages that are to be integrated into one carrier container for shipment. In these instances, it is much more difficult to maximize utilization of the carrier container's capacity and keep shipping cost to a minimum. For this reason, systems have been designed that allow a freight carrier to determine the size of individual packages such that shipping decisions, as far as cost and capacity are concerned, can be made.
These conventional package measurement systems vary widely in design and implementation. For instance, some conventional systems are implemented in conveyor belt systems and take measurements of the dimensions of packages using infrared transmitters and sensors that are positioned on the conveyor belt and sense when a package is present. Based on the time it takes for the package to pass the infrared sensor and the speed of the conveyor belt, the system can determine the dimensions of the package. Other systems implement measurement boxes having known dimensions in which each individual package is placed. These measurement systems use light curtains, infrared transmitters and sensors, or sonic transmitters and transducers that sense the amount of the measurement box the package occupies to determine the dimensions of the package. Still further, other systems use a measurement box that has scales in an X, Y, and Z axis that are bar coded. The package to be measured is placed in the measurement box and bar code scanners read the bar codes associated with the portions of the scales that are visible at the edges of the box to determine the package's dimensions.
Although the above package measurement systems provide devices and methods for the determining the dimensions of a package, they do have some drawbacks. Specifically, many of these conventional measurement systems are mostly stationary and are not conducive to portability. They typically employ the use of conveyor belts, multiple sensors, or measurement boxes that are not easily transportable. These measurement systems can also be costly and may require an unacceptable amount of space for implementation. Portability of the measurement device, cost for implementation, and overall size of the measurement system, however, are important factors to be considered in the use of a package measurement device by a freight carrier.
Specifically, some freight carriers are engaged in the shipment of packages from private individuals and a large number of different companies on a non-bulk shipment basis. In many instances, the number of packages to be shipped per customer on any given day is typically a small quantity, and the carrier typically sends personnel to the customer's facility for pickup of packages or the customer will bring the packages to a regional office for shipment. Because the packages are typically not part of a bulk shipment, the individual packages may vary widely in size, and the freight carrier is usually not aware of the dimensions of any of the packages prior to pickup.
As discussed above, however, the overall size of the package may affect the cost of shipment. This creates a problem in that the cost of shipment of the package is usually negotiated at the time of pickup, not after the package has been later processed for shipment. Due to these factors, it is advantageous to measure the package at the pickup site such that the cost associated with the package size can be added to the customer's bill. Additionally, it is advantageous to electronically store the dimensions of the package such that this information can be subsequently used to determine logistics for integrating the package with other packages into a carrier container for shipment.
Conventional systems, however, are typically not conducive to point of purchase measurement of the package such that the customer can be immediately charged for the size of the package to be shipped and the dimensions can be electronically stored. Specifically, in instances where the freight carrier picks up the package at the customer's facility, conventional measurement systems do not provide the portability needed to allow the freight carrier to quickly determine at the pick up point the dimensions of a package. Likewise, when packages are brought to a regional office by the customer, conventional measurement systems do not provide cheap, cost effective, and size manageable measurement devices. Although conventional conveyor belt or measurement box systems might be used in these instances, the cost and space needed to accommodate conventional conveyor belt measurement systems and the cost of sensors and materials needed for conventional measurement box systems can significantly increase shipping cost.
Because portability, space, and cost are a major concern, a portable measurement system is needed that allows the freight carrier to easily determine the dimensions of a package at point of pick up such that the cost associated with shipping of the package can be easily assessed to the customer and the package dimensions can be stored electronically such that the dimensions are readily accessible for later shipment decisions.
SUMMARY OF THE INVENTION
As set forth below, the method and apparatus of the present invention for measuring the dimensions of an object can overcome many of the deficiencies identified with conventional package dimension measurement systems. In particular, the method and apparatus of the present invention provides a portable measurement system that allows the user to quickly and easily take the measurements of a package. The method and apparatus of the present invention stores the dimensions of the package such that these dimensions may be used to determine the cost for shipping the package and also the space needed for integrating the package with other packages in a carrier container for shipment. In particular, the present invention provides a portable measurement system that requires a minimum number of components, is cost effective, and is miniaturized compared to many conventional measurement systems.
These and other advantages are provided, according to the present invention, by an apparatus for measuring at least one dimension of an object as represented by the distance between two points of interest associated with the object. The apparatus includes a transmitter that is positioned at a first point of interest on the object. The transmitter transmits a scanning light beam rotated at a predetermined angular velocity. Located at the second point of interest on the object is a target. At least a portion of the target defines a first plane that reflects the scanning light be
Ober Lawrence Richard
Orr Raymond Andrew
Alston & Bird LLP
Hand Held Products, Inc.
Rosenberger Richard A.
LandOfFree
Portable measurement apparatus for determinging the... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Portable measurement apparatus for determinging the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Portable measurement apparatus for determinging the... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2876059