Portable intensive care unit

Beds – Field stretcher – Combined or convertible

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C005S658000, C005S503100, C128S845000

Reexamination Certificate

active

06195821

ABSTRACT:

FIELD OF THE INVENTION
THIS INVENTION relates to a portable intensive care unit and in particular but not limited to a stretcher style mobile intensive care unit for field use.
BACKGROUND ART
The present invention has particular application on premises or sites of operations to provide easy access to a fully equipped life support facility that can be quickly transported by road or air to further services that can provide the ongoing long-term treatment required so that the present invention can be easily returned to the site and partake in further rescue activities. This in turn enables the patient to not only receive emergency medical treatment at the point of accident (where a lack of treatment or suitable equipment may complicate their condition), but will most definitely enhance their recovery for having been treated so quickly and effectively.
Prior art solutions are generally unsatisfactory. One solution involves a so called stretcher bridge which holds instruments and straddles a stretcher, thereby bridging over the patient. While this unit has relatively low cost, equipment is exposed to the elements, patient access is restricted, the unit is relatively fragile and because of its small size, is not a fully self-contained unit. The unit lacks oxygen supply or power supply back-up. In addition, the unit does not satisfy air worthiness requirements.
Another unit of Israeli origin provides a single enclosure mounted to the rear wall of an aircraft to provide a flight surgeon with a full range of intensive care equipment. However, unfortunately, this system is not portable.
It is an object of the present invention to provide an alternative system which alleviates the aforementioned disadvantages of the prior art.
OUTLINE OF THE INVENTION
In one aspect therefore, the present invention resides in a mobile intensive care unit comprising an elongate, hollow housing having an upper patient support table, the housing being adapted to hold at a location below the support table, a range of medical equipment customarily required for emergency care. Typically the equipment is arranged in side-by-side position and the unit has handles so that the unit can be carried like a stretcher.
The housing is preferably made from a fiber reinforced resin and preferably carbon fibre is employed as this provides strength, but also reduces radiant interference from electrical equipment housed in the unit. The use of carbon fibre also enables the housing to be thin walled whilst retaining impact resistance.
The housing is preferably internally braced. Advantageously, the housing includes an outer side wall bridging between the support table and a bottom wall, the housing has at least two transverse bracing walls, one adjacent each end of the housing, the bracing walls being interconnected by a third longitudinally extending bracing wall generally centrally disposed in the housing. The walls typically have an average wall thickness of 1 to 3 mm, but where necessary, the walls are locally strengthened particularly in areas prone to concentrated load, for example, handles or tie down sites etc. The carbon fibers are preferably laid in layers at plus or minus forty-five degrees to improve loading characteristics.
The medical equipment is typically located side-by-side on one side of the central wall so that medical personnel need only operate from one side of the unit. The other side of the central wall is typically used for storage. Oxygen bottles are typically located at opposite ends of the unit and away from the medical equipment.
The support table can be flat, but can be channel-like or recessed. Typically, the support table is designed to mount a stretcher, the support table having four stretcher feet sockets and transverse slots extended between adjacent sockets for receiving transverse stretcher braces.
The housing is typically divided into a plurality of isolated medical equipment holders including a defibrillator holder having a drawer so that a defibrillator can be easily removed from the unit for emergency use.
The housing is preferably generally symmetrical in side view so that it is balanced. The unit typically includes a central cavity of generally rectangular shape and has tapered ends extending on opposite ends of the generally rectangular cavity. The central cavity typically has a sliding door.
The housing is preferably designed so that it can be carried in an aircraft with at least four locally strengthened and evenly spaced securing points and most preferably eight securing points are used so that the unit can be either tied down or hung in stackable fashion with other similar units.
The housing preferably includes lock down means provided in an underside of the housing so that the unit can be secured to a surface such as the floor of an ambulance. The lock down means typically comprises a pair of skids or rails extending along the underside of the housing. The skids or rails typically provide added structural strength to the unit and are preferably equipped with spaced apertures so that a strap or other means can pass through the apertures to lock the unit in place.
The housing is preferably equipped with brackets, holders or independent locating sites for the medical equipment so that the medical equipment is rigidly stowed yet removably secured in the housing.
The housing preferably includes a door or doors providing protection for the medical equipment from the elements or other contamination. One door is typically a vertically moveable curtain. The curtain is typically open in its lowered position. The medical equipment holders are preferably arranged so that the medical equipment is set back from the door to further limit contamination when the door is open.
Each item of medical equipment is preferably standard, off the shelf equipment and, of course, each item of medical equipment normally has its own power requirements. In this sense, each piece of equipment is isolated within the unit. Most preferably however, the unit employs a power supply conditioner through which power is supplied, firstly to the unit and then to each item of medical equipment. The power supply conditioner preferably has a supply inlet for connection to mains or any other external power source, an input circuit receiving current from the external source, a power supply conditioner circuit and a DC output circuit providing a conditioned DC output to the medical equipment. In a most preferred form, the supply inlet is adapted to receive any one of normally available AC or DC supplies, the conditioned supply at the output being isolated from fluctuations at the input to provide a standard DC voltage to the medical equipment. Typically, the defibrillator is not connected to the power supply, but is solely supplied by its own battery and is therefore isolated from the power supply conditioner. Preferably, the power supply conditioner is located adjacent a vent in the housing to cater for variations in pressure within an aircraft cabin.
The unit preferably includes an oxygen supply circuit as well as the various power supply circuits and an electrical circuit leading from the power supply conditioner to the medical equipment, the oxygen supply circuit and the electrical circuit are preferably arranged so that oxygen supply lines and electrical cables are carried on either side of a dividing wall for safety purposes. The oxygen supply circuit preferably includes at least two oxygen bottles and a pneumatic circuit with oxygen supply selection means enabling selection of either of the two bottles or an external supply.


REFERENCES:
patent: 3304116 (1967-02-01), Stryker
patent: 3341246 (1967-09-01), Lavallee
patent: 3761968 (1973-10-01), Besler
patent: 3877427 (1975-04-01), Alexeev et al.
patent: 4224936 (1980-09-01), Cox
patent: 4352991 (1982-10-01), Kaufman
patent: 4584989 (1986-04-01), Stith
patent: 4691397 (1987-09-01), Netzer
patent: 4757811 (1988-07-01), Clark
patent: 4768241 (1988-09-01), Beney
patent: 4957121 (1990-09-01), Icenogle et al.
patent: 5084922 (1992-02-01), Louit
patent: 5446934 (1995-09-01),

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Portable intensive care unit does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Portable intensive care unit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Portable intensive care unit will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2479865

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.