Portable hearing-related analysis system

Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Electrical signal parameter measurement system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C381S023100, C381S060000

Reexamination Certificate

active

06366863

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to a portable hearing analysis system for use analyzing hearing-related conditions and for programming programmable hearing aids. More particularly, it relates to a plug-in portable hearing-related analysis system utilizing a portable host computer in conjunction with a plug-in hearing-related analysis Card that operate with a well-defined port.
2. Description of the Prior Art
Hearing aids have been developed to ameliorate the effects of hearing losses in individuals. Hearing deficiencies can range from deafness to hearing losses where the individual has impairment of responding to different frequencies of sound or to being able to differentiate sounds occurring simultaneously. The hearing aid in its most elementary form usually provides for auditory correction through the amplification and filtering of sound provided in the environment with the intent that the individual can hear better than without the amplification.
Prior art hearing aids offering adjustable operational parameters to optimize hearing and comfort to the user have been developed. Parameters, such as volume or tone, may easily be adjusted, and many hearing aids allow for the individual user to adjust these parameters. It is usual that an individual's hearing loss is not uniform over the entire frequency spectrum of audible sound. An individual's hearing loss may be greater at higher frequency ranges than at lower frequencies. Recognizing these differentiations in hearing loss considerations between individuals, it has become common for a hearing health professional to make measurements that will indicate the type of correction or assistance that will be the most beneficial to improve that individual's hearing capability. A variety of measurements may be taken, which can include establishing speech recognition scores, or measurement of the individual's perceptive ability for differing sound frequencies and differing sound amplitudes. The resulting score data or amplitude/frequency response can be provided in tabular form or graphically represented, such that the individual's hearing loss may be compared to what would be considered a more normal hearing response. To assist in improving the hearing of individuals, it has been found desirable to provide adjustable hearing aids wherein filtering parameters may be adjusted, and automatic gain control (AGC) parameters are adjustable.
Various systems for measuring auditory responses are known, and prior art audiometer systems characteristically are embodied in relatively large stand-alone units. Such hearing analyzing systems are referred to as audiometers, and usually provide for application of selected tones, broad-band noise, and narrow-band noise variable in frequency and amplitude, respectively, to aid in determining the amount of hearing loss a person may have. To assess hearing thresholds for speech, an audiometer may also reproduce live voice or recorded speech at selectable calibrated levels. Various complex controls are used to administer varying sound conditions to determine a range of responses for the individual. These responses can be charted or graphed, and can serve as the basis for applying programming signals to programmable hearing aids. Size and complexity result in prior art audiometers being primarily useful only in facilities primarily dedicated to hearing care. Further, there is usually a requirement that hearing response parameters determined through use of prior art audiometers be manually entered into hearing aid programming devices. Portable audiometers that can be used in conjunction with a portable hearing aid programming system are not available in the prior art.
The prior art audiometers usually include a separate housing, individual controls of various sound sources, and a separate power supply operating from its power cord or power source.
With the development of micro-electronics and microprocessors, programmable hearing aids have become well-known. It is known for programmable hearing aids to have a digital control section which stores auditory parameters and which controls aspects of signal processing characteristics. Such programmable hearing aids also have a signal processing section, which may be analog or digital, and which operates under control of the control section to perform the signal processing or amplification to meet the needs of the individual.
Hearing aid programming systems have characteristically fallen into two categories: (a) programming systems that are utilized at the manufacturer's plant or distribution center, or (b) programming systems that are utilized at the point of dispensing the hearing aid.
One type of programming system for programming hearing aids are the stand-alone programmers that are self-contained and are designed to provide the designed programming capabilities. Stand-alone programmers are available commercially from various sources. It is apparent that stand-alone programmers are custom designed to provide the programming functions known at the time. Stand-alone programmers tend to be inflexible and difficult to update and modify, thereby raising the cost to stay current. Further, such stand-alone programmers are normally designed for handling a limited number of hearing aid types and lack versatility. Should there be an error in the system that provides the programming, such stand-alone systems tend to be difficult to repair or upgrade.
Another type of programming system is one in which the programmer is connected to other computing equipment, and are available commercially.
A system where multiple programming units are connected via telephone lines to a central computer is described in U.S. Pat. No. 5,226,086 to J. C. Platt. Another example of a programming system that allows interchangeable programming systems driven by a personal computer is described in U.S. Pat. No. 5,144,674 to W. Meyer et al. Other U.S. patents that suggest the use of some form of computing device coupled to an external hearing aid programming device are U.S. Pat. No. 4,425,481 to Mansgold et al.; U.S. Pat. No. 5,226,086 to Platt; U.S. Pat. No. 5,083,312 to Newton et al.; and U.S. Pat. No. 4,947,432 to Totholm. Programming systems that are cable-coupled or otherwise coupled to supporting computing equipment tend to be relatively expensive in that such programming equipment must have its own power supply, power cord, housing, and circuitry, thereby making the hearing aid programmer large and not as readily transportable as is desirable.
Yet another type of hearing aid programmer available in the prior art is a programmer that is designed to install into and become part of a larger computing system. Hearing aid programmers of the type that plug into larger computers are generally designed to be compatible with the expansion ports on a specific computer. Past systems have generally been designed to plug into the bus structure known as the Industry Standard Architecture (ISA) which has primarily found application in computers available from IBM. The ISA expansion bus is not available on many present-day hand-held or lap top computers. Further, plugging cards into available ISA expansion ports requires opening the computer cabinet and appropriately installing the expansion card.
When programming is applied to programmable hearing aids, it is desirable to be able to sample the effectiveness of the programming at the ear of the wearer. To this end, another hearing-related system, referred to as so-called “real-ear” systems, have been employed to sample the output of a programmed hearing aid when in place on the user. Probe microphones are utilized to pick up the output of the hearing aid located in a user's ear, and to provide an output signal that can be compared to a target insertion gain curve for the user. Normally this requires output readings to be taken and then entered manually into the programming device to compare actual responses to predicted responses. The real-ear system automatically calcula

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Portable hearing-related analysis system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Portable hearing-related analysis system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Portable hearing-related analysis system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2819733

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.