Portable handheld hearing screening device and method with...

Surgery – Diagnostic testing – Ear or testing by auditory stimulus

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S300000, C128S920000, C073S585000

Reexamination Certificate

active

06786873

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field
This invention pertains to hearing screening devices. In particular, it pertains to a hearing screening device employing handheld detectors of otoacoustic emissions or auditory brainstem responses, which transmit them to a remote central computer server. The remote central computer server analyses the signals and transmits them to an audiologic screen device, which displays the otoacoustic signals responses to determine whether they are or are not significant. These signals can also be analyzed and displayed by the handheld device as well.
2. State of the Art
Hearing Screening, especially on neonates, often takes place in environments, where a personal computer (PC) is not easily available, such as in a maternity clinic, NICU, etc., or, it is conducted by staff who are not very familiar to work with PC-SW. Screening programs should be easy to conduct. They should be able to deliver consistent results independent of the user. It should be a quick operation for personal (doctors, nurses), parents and neonates.
In order to fulfill these requirements, handheld, stand-alone screening devices have been developed. Today, many regional and/or statewide hearing screening programs will be implemented soon within Europe, Japan, USA, and many other countries all over the world.
Hearing screening programs require patient tracking & follow up diagnostic procedures. A screening test will deliver a “Pass”/“Refer” result without indicating in detail the hearing disorder. Therefore, after a “refer” result, a more detailed diagnostic is necessary. This normally is done by an audiologist or an ENT expert using more sophisticated diagnostic equipment. In most cases, these experts and specialized equipment are located in a different clinic or hospital.
Also there is an increasing need for statistical evaluation of the overall screening results requested by the region or the state. Therefore, all results of a screening program need to be transmitted to some central ‘Patient Tracking System’, which most probably is also located far from the screening location.
Furthermore “quality assurance programs” need to be introduced in order to guarantee that the correct result will be linked to a person. Therefore “safe” data transfer from the single screening device to the central data logging computer (often only one per region) is required.
In order to fulfill these requirements many of the new screening devices can be hooked up to a PC or Laptop, which then transfer the screening results in a second step to the central ‘Patient tracking system’. Unfortunately, this approach again requires PC knowledge, which can be avoided by introducing the handheld, stand-alone screening devices. Currently, many handheld hearing screening devices, such as the handheld audiological screening device produced by Fischer-Zoth GmbH under its “echo-screen”, trademark, are able to transfer the test result to a local PC or Laptop, either via a cable connection, infrared or other methods, like “blue tooth”. The local PC then synchronizes—in a second step—its data with a central “Patient tracking database” located on a remote, central computer. This could be done by sending the data from PC to the central computer via a global communication link, internet, modem connection or other methods. As mentioned, these handheld devices are simple to use, but do not allow the user to enter additional data, transfer the data directly to the “Screening database” or have any direct communication with that database.
To avoid these limitations, a handheld signal transmitting screening device, and receiver associated with a signal analysis database is required to translate the signals and transmit them back to the user. The device and method described below provides such an invention.
SUMMARY OF THE INVENTION
In clinical practice, it is important to transfer the screening results to a tracking system or database quickly and easily. The invention accomplishing these objectives comprises a handheld stand alone screening device and method for using the same, which is adapted to hook up via a modem, network card, bluetooth interface or any other interface with data transmission networks and mediums such as terrestrial and wireless phone networks, optical data transmission networks, local area networks (LAN), wide area networks (WAN). It will communicate directly and autarkic (without means of a PC, Laptop, or personal organizer) with a local or remote server or computer, which handles and memorializes all patient related data. This also allows the access of many screening devices to one local database, either sequentially or contemporaneously.
The device is also capable of receiving the necessary patient data directly from the database stored in the remote or local server. After the local hearing screening measurement has been completed successfully, the device enables a user to dial in directly into the transmission network (terrestrial or wireless phone network) and download the test results into the server. This connection could be done by a dialup connection via a built-in or attached modem (analog, ISDN etc.), via a connection to a local area network (LAN) or wide area network (WAN) or other techiques. The modem connection generally includes the use of mobile phones and the direct access to the internet or intranet. The modem can be any external modem connected to the device or can be built into the device itself.
The objective is to eliminate the use of a local computer and its own operative software for the translating connection. An example of a preferred embodiment of the device and system is that produced by Fischer-Zoth GmbH, which is a handheld OAE and/or ABR Screening device having at least one acoustic transmitter structured for generating one or more stimuli at sound frequencies in each ear canal of an infant, which generate responsive otoacoustic emissions in both ear canals of the infant or newborn. At least one microphone is included and adapted to be removably placed in both ear canals for collecting any transient evoked and distortion product otoacoustic emissions generated by the cochlea in each ear canal in response to the stimulus to generate a frequency mixed product electronic signal. In addition, collection means, such as three electrodes placed onto the scalp, collect any click or frequency stimulated brainstem responses. A digital signal processor is associated with the microphone and electrodes to analyze their electronic signals. It is programmed with statistical processing instructions to statistically evaluate acoustic signal components by means of binomial statistics to determine whether a measured signal contains stimulus elicited components for each frequency on a defined level of significance. An input device is included and associated with the microphones for inputting the frequency mixed product electronic signals and the stimulus frequencies into an incorporated computer processor. The device has an amplifier associated with the computer processor for amplifying the frequency mixed product electronic signals. A frequency analyzer and phase analyzer is associated with the computer processor to analyze a measured acoustic signal and separate the different frequencies and phases from one another. A display for displaying if the otoacoustic signal responses are or are not statistically significant may be included. In addition, a receiver may be included for displaying on the handheld screening device all patient related date, such as the infant patient's name, mother's name, birth date, address, in/outpatient, status, patient identification, hospital identification, patent history, etc. A modem (built-in, external, or plug-in) or external network adapter then transmits the handheld OAE and/or ABR response data, such as environmental noise, probe fit, electrode impedance, signal to noise ratio, etc, to an external database server. An external or internal power source is associated with the computer components, microphones, transmitters, amplifiers, display means, electr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Portable handheld hearing screening device and method with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Portable handheld hearing screening device and method with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Portable handheld hearing screening device and method with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3188572

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.