Refrigeration – Portable – commodity-containing
Reexamination Certificate
1999-04-22
2001-05-01
Tapolcai, William E. (Department: 3744)
Refrigeration
Portable, commodity-containing
C062S457200, C062S530000
Reexamination Certificate
active
06223551
ABSTRACT:
This invention relates to a cold envelope having a purpose of holding articles cold that need to be kept cold during a modest transport period of time.
Articles such as medicines, biological materials and the like are the type of materials that need to be transported typically from a central storage locality to a retail sales outlet.
The challenge then has been to be able to provide a package which can be as small as possible and therefor as economic as possible in terms of the material needed to manufacture the holder while at the same time the package should provide an arrangement that can be used over a repeated number of times, which will take up a minimum amount of space, will reliably hold any articles therein within a selected temperature range over a selected period and will ensure that when articles are within the arrangement, they will be appropriately subjected to appropriate cooling.
Reference throughout this specification is made to an envelope or envelope like shape which is to be taken as referring to an article with two sheets providing two sides which are joined directly together at their side edges and one end.
An object of this invention is to propose a cold pack for articles that need to be kept cold during transport which answers at least one of the above difficulties or provides the public with a useful alternative.
According to this invention, there is proposed a cold keeping envelope for articles that need to be kept cold during transport comprising an outer insulating envelope and an inner envelope or envelope like shape having liquid or liquid like material to be frozen held within a plurality of separate cells forming the inner envelope such that when the liquid or liquid like material is frozen solid, the inner envelope can be caused to open by relative rotation of adjacent frozen cells to allow for insertion of articles therein.
This, in preference, is directed to an envelope as a shape and proposes two envelopes or envelope and envelope like shape one encompassing the other in which the inner envelope or envelope like shape holds the material that will keep the inner articles cold. The conventional problem here though is if one uses an envelope shape, when liquid held within an inner envelope shape is frozen, this will be frozen rigid and one simply will not be able to easily open the envelope shape to get articles inside.
The answer has been to divide the frozen materials into separate cells which extend into an envelope shape but such that the connections between each cell are not going to be made rigid by freezing at least at temperatures at which the liquid or liquid like material will be frozen solid so that the cells will pivot one with respect to another about their mutual joint areas.
The simple result is that one has an inner frozen part which will be able to be flexed open to allow for an envelope opening so as to be able to put articles therein and even thereafter to be able to close the envelope so that the articles within the envelope shape and especially nested within the inner envelope shape can be assured of being adjacent frozen liquid or liquid-like materials and thus ensure that all parts of the article will be kept at a relatively uniformly cold temperature.
A further problem is to provide an external envelope which can provide most effective insulation without being vulnerable to easy deterioration or being too heavy or too bulky and in this respect, a material that is conventionally used for postage and packing has been found to be ideal namely a sheet or sheets of plastics material in a bubble formation and in further preference, this has sides welded together to form an envelope shape thus forming the outer insulation envelope.
Such material is transparent as conventionally supplied in its normally provided form and there is therefore provided in conjunction with this, in preference, an opaque heat reflective surface on the outer side of the outer envelope material.
With the arrangement described, one of the problems could be that an article when quickly inserted by persons not thoughtfully considering the position could be to insert articles between the inner and outer envelope shapes.
This obviously could be very disadvantageous because it would not necessarily be kept at a preferred temperature and in the case of vulnerable materials and longer transport periods, this could be damaging to the materials and be perhaps dangerous if a user is unaware of the possible deterioration.
This problem has been overcome however by providing in preference that the outer edges of the inner envelope are welded or otherwise adhered to or joined to the outer edges of the outer envelope around the mutual opening area.
It has also been found to be of advantage to ensure that the inner envelope shape when not frozen doesn't bunch up into a smaller area. In preference this is achieved by the bottom of the inner envelope shape being welded to the inner bottom end of the outer envelope.
When reference is made to welding, this assumes that any form of attachment can be used such as adhesion, welding or simply ensuring that some of the parts are extending across in some form of integral way.
In preference there is further value in being able to keep a temperature within the envelope over a sustained period of time within a range of temperatures which are appropriate for particular types of materials.
These types of materials can be pharmaceutical materials and the temperature range that is preferred lies between the range of 2° C. to 8° C.
It has been found that if the envelope has frozen liquid or gel on both sides of the envelope shape, then this can cause the interior to be colder than 2° C. for at least some period of time and in accord with this further preferred improvement then it has been found that there is advantage in providing that the inner envelope shape has cells holding a liquid or liquid like material to be frozen where this is located on one side of the inner envelope shape only.
In preference, with the cells being retained on one side only, there is still separation of the cells by an arrangement so that these can be bent one with respect to the other when the material contained within the cell is frozen solid.
A further preferred feature includes the incorporation of two layers of plastic retaining air in bubble-like formations.
By doubling this material, particularly on the side of the envelope opposite to that in which the material to be frozen or been frozen is held, this reduces the rate of heat gain.
Accordingly, the temperature is kept within the desirable range of 2° C. to 8° C. over a longer period of time.
In preference, the double stack of bubble like formed plastic sheets can also be heat sealed together so as to form parts of lesser thickness which will encourage bending around such locations and by providing these are generally in align with the same patterns of the cells containing the material to be frozen, then when an envelope constructed in accordance with the described features is subjected to freezing and afterwards then opened to receive material to be transported, the opening will follow bending of the surfaces in accordance with the heat welded seams and therefore present a relatively neat box like shape appropriate to receive the material and to be subsequently sealed by a flap in the manner previously described in the other two specifications.
By using a gel pack on one side only of the opening within the envelope this gel pack is then welded at its edges with respect to the remaining materials forming the envelope shape.
As such then there is implicitly formed an inner envelope and the outer elements form an outer envelope even though in this case, it is not clear that there is a separable material specifically forming the other side of an inner envelope which then is integrated into the inner surface of the bubble like formation of the plastic sheets.
Different arrangements of cell shapes, therefore, will give different results and in a further instance, there is provided in preference, a cent
Instar Pty. Ltd.
Senterfitt Akerman
Tapolcai William E.
LandOfFree
Portable flexible container for keeping articles cold does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Portable flexible container for keeping articles cold, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Portable flexible container for keeping articles cold will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2496282