Portable automatic fastener delivery system

Article dispensing – Cellular magazine type – With non-gravity means to remove articles from cells

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C227S112000

Reexamination Certificate

active

06688489

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to automated fastening equipment and more particularly to equipment that automatically delivers fasteners to a work station or a plurality thereof.
BACKGROUND OF THE INVENTION
Manufacturing equipment that automatically delivers fasteners to a workpiece, or a fastening device, is typically employed in high rate production environments. The equipment generally comprises a storage device for the fasteners and a mechanism or system that transports fasteners from the storage device to the workpiece or fastening device. For example, U.S. Pat. No. 5,588,554 to Jones, the contents of which are incorporated herein by reference in their entirety, discloses a device for delivering fasteners to a workpiece comprising a suction head that removes fasteners from a storage area and delivers the fasteners through a delivery tube using a vacuum. The fasteners are individually stored in holes of a predetermined or fixed depth, and only one fastener may be stored in any given hole. Accordingly, each hole contains a fastener of a specific configuration, diameter, and grip length. Moreover, the device of Jones is incorporated in a relatively large assembly system that is permanently installed at a fixed location within a production facility, and thus the fastener delivery system is not portable.
Yet another known art fastener delivery system is disclosed in U.S. Pat. No. 5,193,717 to Rink et al., wherein rivet cartridges are unloaded and rivets are delivered to a rivet machine or the like with pressurized air. The rivet cartridges are filled off line by a rivet pump that receives rivets from a vibrating bowl feeder, and the fasteners are delivered through a common passageway to a fastener installation tool. However, the fastener delivery system of Rink et al. requires a separate fastener escapement mechanism to remove and deliver the fasteners. Additionally, the fastener delivery system of Rink is mounted to a fixed base plate and is therefore not mobile or portable.
Unfortunately, automated fastener delivery equipment of the known art is substantially large in size and must be permanently installed into the flooring and existing structure of a manufacturing facility. U.S. Pat. No. 5,664,311 to Banks et al., the contents of which are incorporated herein by reference in their entirety, illustrates such an automated fastening system wherein a large assembly jig is mounted to a floor and consumes a substantial volume within a manufacturing facility. Furthermore, the parts or components that are being assembled must be positioned with tooling located within a working envelope of the automated fastener delivery equipment, which may also consume a substantial volume. Accordingly, the automated fastener delivery equipment of the known art is not portable and cannot be moved from work station to work station in order to deliver fasteners to a variety of assemblies and subassemblies.
In the production assembly of aircraft, the majority of substructure such as fuselage frames and longerons, along with wing spars and ribs, are joined to the skin of the aircraft with thousands of fasteners. Further, a plurality of fastener types, along with variations in diameters and grip lengths, are typically used in an aircraft assembly or subassembly. (Generally, a fastener grip length refers to the cumulative thickness of the parts that the fastener holds together). Moreover, a majority of the substructure parts are manually assembled and are not assembled using automated fastening equipment.
During manual assembly operations, an operator must first determine the appropriate fastener type and diameter from a blueprint or other manufacturing work instruction delivery system. Due to manufacturing variations in individual part fabrication and assembly positioning variations, the proper grip length of the fastener is often determined by manually measuring hole depths. Once the proper fastener configuration is determined, the fastener stock must then be located and selected from fastener bins, which are typically stored at a common location near the work station. A limited number of fasteners are then moved by hand from the fastener bins to the work station and are generally staged within the reach of an operator. If permitted by the work environment, several fasteners are stored in a pouch that is secured around the waist of an operator. Accordingly, the operator sorts through the fasteners to select the proper configuration and inserts the fastener directly into a hole through the parts or inserts the fastener into an installation tool that installs the fastener through the parts.
As a result, a significant amount of time is spent by an operator determining the proper fastener configuration, locating the fastener within a storage bin, and transporting the fastener to the work station for installation. In addition, the manual location and staging of fasteners introduces an increased risk of foreign object damage (FOD) from a dropped or misplaced fastener, which may result in severe damage to and/or inoperation of certain aircraft systems. Therefore, manual fastener installation procedures are time consuming and may also increase the risk of failure of aircraft systems.
Accordingly, a need remains in the art for an automated fastener delivery system that is portable and which efficiently delivers fasteners to at least one work station where parts are being manually assembled. The portable fastener delivery system should be capable of delivering a plurality of different fastener configurations, moreover to a plurality of work stations. The portable fastener delivery system should further be capable of automatically selecting the proper fastener configuration from a variety of inputs and should also be capable of maintaining a record of fastener inventory that is further integrated with existing production manufacturing systems.
SUMMARY OF THE INVENTION
In one preferred form, the present invention provides a portable fastener delivery system that comprises an unloading mechanism in communication with a fastener storage device, wherein a control system activates the unloading mechanism to remove a specific fastener configuration from the fastener storage device and transport the fastener to a delivery conduit, where the fastener is caused to be delivered to a work station. Generally, the unloading mechanism, fastener storage device, control system, and delivery conduit are disposed within a portable platform such as a mobile cart so that the fasteners may be delivered to a plurality of work stations located throughout a manufacturing facility.
The control system further employs a pneumatic source to remove the fasteners from the fastener storage device and deliver the fasteners through the delivery conduit. Generally, the pneumatic source removes the fasteners from the fastener storage device by activating a vacuum generator that draws a fastener into the unloading mechanism. Once the unloading mechanism is positioned adjacent the delivery conduit, the vacuum generator is deactivated, and the fastener is dropped into the delivery conduit. The pneumatic source is then activated to deliver the fastener to a work station using pressurized air through the delivery conduit.
In operation, the control system receives a request for a particular fastener configuration and positions the unloading mechanism adjacent the fastener storage device where the requested fastener is located. Preferably, the control system comprises a linear X-Y positioner that positions the unloading mechanism during operation of the portable fastener delivery system. The vacuum generator is then activated to remove the fastener from the fastener storage device and into the unloading mechanism. Accordingly, the unloading mechanism is positioned adjacent the delivery conduit using the linear X-Y positioner, and the vacuum generator is deactivated, which causes the fastener to drop into the delivery conduit.
The fastener is partially transported through the delivery conduit by gravity, and then the pneu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Portable automatic fastener delivery system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Portable automatic fastener delivery system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Portable automatic fastener delivery system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3295272

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.