Porcine circovirus recombinant poxvirus vaccine

Drug – bio-affecting and body treating compositions – Antigen – epitope – or other immunospecific immunoeffector – Virus or component thereof

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S199100, C424S209100, C424S218100, C435S320100, C435S235100, C536S023720

Reexamination Certificate

active

06497883

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to vectors, such as recombinant vectors; for instance, recombinant viruses, such as poxviruses, e.g., modified poxviruses and to methods of making and using the same. In some embodiments, the invention relates to recombinant avipox viruses, such as canarypox viruses, e.g., ALVAC. The invention further relates to such vectors, e.g., poxviruses, that express gene products, e.g., antigen(s), ORF(s), and/or epitope(s) of interest therefrom, of porcine circovirus 2 (PCV2); to immunological compositions or vaccines. The invention yet further relates to such vectors, e.g., poxviruses, that induce an immune response directed to or against PCV2 gene products and/or PCV2; and, to advantageously, such compositions that are immunological, immunogenic or vaccine compositions and/or confer protective immunity against infection by PCV2. The invention yet further relates to the uses of and methods for making and using such vectors and compositions, as well as intermediates thereof, and said intermediates. And, the invention relates to the products therefrom, e.g., from the uses and methods involving the inventive recombinant or poxvirus, such as antibodies from expression.
BACKGROUND OF THE INVENTION
Postweaning multisystemic wasting syndrome (PMWS) is a recently recognized disease of young pigs. PMWS is characterized clinically by progressive weight loss and other symptoms such as tachypnea, dyspnea and jaundice. Pathologically, lymphocytic and granulomatous infiltrates, lymphadenopathy, and, more rarely, lymphocytic and granulomatous hepatitis and nephritis have been observed (Clark, 1997; Harding, 1997).
This disease has been described in different European countries as well as in North America. Treatment and prevention of this disease are not currently available.
Several lines of evidence point to porcine circovirus as the etiologic agent of PMWS (Ellis et al., 1998). Circoviruses have been recovered from pigs with PMWS, and antibodies to porcine circovirus have been demonstrated in pigs with the disease.
Circoviruses are single stranded circular DNA viruses found in a range of animal and plant species. Porcine circovirus was originally isolated as a contaminant from a continuous pig kidney cell line. The cell culture isolate has been designated PK-15 (Meehan et al., 1997). More recently, porcine circovirus obtained from pigs with PMWS has been compared to PK-15. Such viruses differ substantially from PK-15 at the nucleotide and protein sequence level, and have been designated PCV2 (Meehan et al., 1998; Hamel et al., 1998).
As many as thirteen open reading frames (ORFs) have been identified in the PCV2 genome (COL1 to COL13 in the French patent application 98 03707). Four of these ORFs share substantial homology with analogous ORFs within the genome of PK-15. ORF1 (Meehan et al., 1998; corresponding to COL4 in the French patent application 98 03707), comprising nt 398-1342 (GenBank accession number AF055392), has the potential to encode a protein with a predicted molecular weight of 37.7 kD. ORF2 (Meehan et al., 1998; corresponding to COL13 in the French patent application 98 03707), comprising nt 1381-1768 joined to 1-314 (GenBank accession number AF055392), may encode a protein with a predicted molecular weight of 27.8 kD. ORF3 (Meehan et al., 1998; corresponding to COL7 in the French patent application 98 03707), comprising nt 1018-704 (GenBank accession number AF055392), may encode a protein with a predicted molecular weight of 11.9 kD. ORF4 (Meehan et al., 1998; corresponding to COL10 in the French patent application 98 03707), comprising nt 912-733 (GenBank accession number AF055392), may encode a protein with a predicted molecular weight of 6.5 kD.
ORF1 of PCV2 is highly homologous (86% identity) to the ORF1 of the PK-15 isolate (Meehan et al., 1998). The ORF1 protein of PK-15 has been partially characterized (Meehan et al., 1997; Mankertz et al., 1998a). It is known to be essential for virus replication, and is probably involved in the viral DNA replication.
Protein sequence identity between the respective ORF2s was lower (66% identity) than that of the ORF1s but each of the ORF2s shared a highly conserved basic N-terminal region, similar to that observed in the N-terminal region of the major structural protein of the avian circovirus chicken anemia virus (CAV) (Meehan et al., 1998). Recently, Mankertz et al. (1998b) has suggested that the ORF2 of the PK-15 isolate (designated ORF 1 in Mankertz et al., 1998b) codes for a capsid protein.
Greater differences were observed between the respective ORF3s and ORF4s of the PK-15 isolate and PCV2. In each case, there was a deletion of the C-terminal region of PCV2 ORF4 and ORF3 compared to the corresponding ORFs present in the genome of the PK-15 isolate. The highest protein sequence homology was observed at the N-terminal regions of both ORF3 and ORF4 (Meehan et al., 1998).
The transcription analysis of the genome of PCV2 has not been published yet. Recent data obtained with the PK-15 isolate indicated that the ORF2 transcript is spliced (Mankertz et al., 1998b).
Vaccinia virus has been used successfully to immunize against smallpox, culminating in the worldwide eradication of smallpox in 1980. With the eradication of smallpox, a new role for poxviruses became important, that of a genetically engineered vector for the expression of foreign genes (Panicali and Paoletti, 1982; Paoletti et al., 1984). Genes encoding heterologous antigens have been expressed in vaccinia, often resulting in protective immunity against challenge by the corresponding pathogen (reviewed in Tartaglia et al., 1990). A highly attenuated strain of vaccines, designated MVA, has also been used as a vector for poxvirus-based vaccines. Use of MVA is described in U.S. Pat. No. 5,185,146.
Two additional vaccine vector systems involve the use of naturally host-restricted poxviruses, avipox viruses. Both fowlpoxvirus (FPV; Taylor et al. 1988a, b) and canarypoxvirus (CPV; Taylor et al., 1991 & 1992) have been engineered to express foreign gene products. Fowlpox virus (FPV) is the prototypic virus of the Avipox genus of the Poxvirus family. The virus causes an economically important disease of poultry which has been well controlled since the 1920's by the use of live attenuated vaccines. Replication of the avipox viruses is limited to avian species (Matthews, 1982) and there are no reports in the literature of avipoxvirus causing a productive infection in any non-avian species including man. This host restriction provides an inherent safety barrier to transmission of the virus to other species and makes use of avipoxvirus based vaccine vectors in veterinary and human applications an attractive proposition.
FPV has been used advantageously as a vector expressing antigens from poultry pathogens. The hemagglutinin protein of a virulent avian influenza virus was expressed in an FPV recombinant (Taylor et al., 1988c). After inoculation of the recombinant into chickens and turkeys, an immune response was induced which was protective against either a homologous or a heterologous virulent influenza virus challenge (Taylor et al., 1988c). FPV recombinants expressing the surface glycoproteins of Newcastle Disease Virus have also been developed (Taylor et al., 1990; Edbauer et al., 1990).
Other attenuated poxvirus vectors have been prepared by genetic modifications of wild type strains of virus. The NYVAC vector, derived by deletion of specific virulence and host-range genes from the Copenhagen strain of vaccinia (Tartaglia et al., 1992) has proven useful as a recombinant vector in eliciting a protective immune response against an expressed foreign antigen.
Another engineered poxvirus vector is ALVAC, derived from canarypox virus (ALVAC was deposited with American Type Culture Collection, P.O. Box 1549, Manassas, Va. 20108, USA, under the terms of the Budapest Treaty on Nov. 14, 1996, and is designated as Accession Number VR-2547). ALVAC does not productively replicate in non-avian hosts, a characteristic thought to improve its s

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Porcine circovirus recombinant poxvirus vaccine does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Porcine circovirus recombinant poxvirus vaccine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Porcine circovirus recombinant poxvirus vaccine will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2982706

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.