Pool cleaning method and apparatus

Electricity: motive power systems – Positional servo systems – Program- or pattern-controlled systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C318S162000, C318S558000, C901S001000, C015S001700, C210S167150, C210S416200

Reexamination Certificate

active

06815918

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to pool cleaning robots. More particularly it relates to apparatus and method for cleaning the bottom of a pool.
BACKGROUND OF THE INVENTION
There are many types of automatic pool cleaners available, exhibiting various navigational abilities and ways of cleaning the bottom of a pool.
For example, in U.S. Pat. No. 6,125,492 (Prowse), titled Automatic Swimming Pool Cleaning Device, there was disclosed an automatic swimming pool cleaning device, which includes a flexible cleaning member designed to contact an underwater surface of the swimming pool. A tube is coupled to the cleaning member for connecting the cleaning device to a water vacuum hose via hose adaptor. Water and pool surface contamination is drawn from underneath the cleaning member up through the tube by suction to a water filter system before being returned to the pool. A flexible valve member is mounted proximate a throat region of the tube wherein as water is drawn up through the tube a decrease in pressure in the throat region causes the valve member to flex and momentarily interrupt the flow of water. The interruption to the flow of water through the tube results in a momentary differential of ambient pressure underneath the flexible cleaning member which enables the device to move forwards incrementally along the underwater surface of the pool.
U.S. Pat. No. 6,099,658 (Porat), titled Apparatus and Method of Operation for High-Speed Swimming Pool Cleaner disclosed an apparatus and method for cleaning the bottom and vertical side walls of a swimming pool, pond or tank employing a robotic, self-propelled cleaner. The robot has a protective housing of conventional design, the cleaner being operated at a primary cleaning speed as it traverses the surfaces to be cleaned and until the cleaner housing emerges from the water along a sidewall of the pool; thereafter the cleaner operates at a secondary drive speed that is relatively slower than the primary speed and the cleaner thereafter reverses direction and descends for a pre-determined period of time at the slower secondary speed in order to permit the air entrained under the housing to escape without destabilizing the cleaner during descent. After the predetermined period of time, the cleaner resumes operation at the more rapid primary speed until the cleaner housing once again emerges from the water's surface, after which the cycle is repeated.
In U.S. Pat. No. 5,086,535 (Grossmeyer et al.) titled Machine and Method Using Graphic Data for Treating A Surface, there was disclosed a machine for treating a surface area within a boundary perimeter includes a self propelled chassis having a surface treating device mounted on it. A computing section is mounted on the chassis and a powered wheel (or each of plural powered wheels) has a motor module for receiving command signals from the computing section. A position sensor is coupled to the computing section for generating a feedback signal representing the actual position of the machine. A data loading device coacts with the computing section for transmitting data to such computing section. A data file stores graphic data developed from a graphic depiction representing the surface area to be treated as well as other data developed in other ways. The data file coacts with the computing section and transmits graphic and other data to it. The computing section is arranged for processing the data and the feedback signal and responsively generating command signals directed to each motor module. Such modules, and the motors controlled thereby, propel the machine over the surface area selected to be treated.
U.S. Pat. No. 5,569,371 (Perling) titled System For Underwater Navigation and Control of Mobile Swimming Pool Filter, disclosed an underwater navigation and control system for a swimming pool cleaning robot, having a driver, an impeller, a filter and a processor for controlling the driver and a signal-producing circuit. The system further includes a signal-detecting circuit mounted on the pool, an interface located on the ground in proximity to the pool and comprising a detector for receiving and processing data from the detecting circuit and for transmitting signals to the robot's processor. Determination of the actual robot location is performed by triangulation in which the stationary triangulation base is defined by at least two spaced-apart signal detectors and the mobile triangle apex is constituted by the signal-producing circuit carried by the robot.
U.S. Pat. No. 5,197,158 (Moini) titled Swimming Pool Cleaner, disclosed a vacuum powered automatic swimming pool cleaning device having a hollow housing supported on two pairs of device mover wheels. The housing includes a central water suction chamber in water flow communication with a water suction trough at the bottom of the housing and in water outlet communication with an external vacuum line, a gear train for driving one of the pairs of mover wheels, and pivoted directional control floats. The water suction chamber houses an axle mounted turbine wheel bearing water driven vanes with the turbine being rotated in one direction only by water flow through the chamber. The turbine axle bears a turbine power output drive gear which intermeshes with one or the other of two shift gears which in turn reversibly drive the gear train as dictated by the position of the directional control floats within the housing. The floats swing shift within the housing to shift the shift gears in response to the impact of the cleaning device on an obstruction on the pool floor or by the device impacting a vertical pool wall. The swing shift of the control floats reverses the rotation of the mover wheels and thus the direction of movement of the cleaning device on the pool floor.
U.S. Pat. No. 4,786,334 (Nystrom) titled Method of Cleaning the Bottom of a Pool, disclosed a method of cleaning the bottom of a pool with the aid of a pool cleaner. The pool cleaner travels along the bottom of the pool and collects material lying at the bottom of the pool. The pool cleaner is arranged to travel to and fro in straight, parallel paths between two opposite walls of the pool. At the walls the pool cleaner is turned by rotating a half turn so that, after turning, it will have been displaced laterally perpendicular to the initial direction of travel.
In U.S. Pat. No. 4,593,239 (Yamamoto) titled Method and Apparatus for Controlling Travel of an Automatic Guided Vehicle, there was disclosed an automatic guided vehicle detects marks located on a plurality of points along a route it travels using at least three sensors, selects the number of marks detected from each individual sensor as a reference value in accordance with the logic of majority, and stops when the reference value agrees with a predetermined value. Cumulative errors, caused by misdetection are thus avoided and, there is little cumulative error.
U.S. Pat. No. 4,700,427 (Kneppers), titled Method of Automatically Steering Self-Propelled Floor-Cleaning Machines and Floor-Cleaning Machine for Practicing the Method, disclosed a method of automatically steering a self-propelled floor-cleaning machine along a predetermined path of motion on a limited area to be worked. A sequence of path segments stored in a data memory is retrieved, and the path segments travelled by the machine. Markings are recognized by at least one sensor and converted into course-correcting control commands actuating and/or steering the machine.
U.S. Pat. No. 3,979,788 (Strausak) titled mobile machine for cleaning swimming pools, disclosed a Mobile Machine for Cleaning Swimming Pools by suction removal of sediment from the bottom of the swimming pools comprises a water turbine driving a drive wheel in such a way that the machine follows a self-steered path on the bottom of the swimming pools. The drive wheel is capable of rotating about a vertical steering axle to prevent the machine from becoming blocked at a wall or in a corner of the swimming pools.
It is noted that covering efficiently and quickly the bottom (

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pool cleaning method and apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pool cleaning method and apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pool cleaning method and apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3334682

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.