Polypropylene materials with high melt flow rate and good...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C525S191000, C525S192000

Reexamination Certificate

active

06599985

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the production of propylene polymer. In particular, the present invention relates a controlled rheology propylene polymer which has a high melt flow rate and good molding characteristics, as well as techniques for producing said controlled rheology propylene polymer.
BACKGROUND
High melt flow rate polypropylene can be produced directly in a polymerization reactor, but its production is often limited by the solubility of hydrogen in the reaction. Hydrogen is the most effective chain transfer agent for propylene polymerization reactions, whether the reaction takes place in solution or in the bulk monomer.
Another method for producing high melt flow rate polypropylene is to degrade low melt flow rate polypropylene using controlled rheology. Controlled rheology treatments are often employed as alternative techniques for producing high melt flow rate (“MFR”) polypropylene because these treatments do not depend on hydrogen solubility. Instead, controlled rheology treatments are typically carried out using organic peroxides in a polymer extruder. See, e.g., Castagna, et al., U.S. Pat. No. 3,940,379, and Morman, et al, U.S. Pat. No. 4,951,589. Controlled rheology treatments can also be used to increase production efficiency by converting the low melt flow rate polymers into high melt flow rate polymers without changing plant operating reactor conditions. Thus, many manufacturers prefer controlled rheology treatments to produce high melt flow rate polymers.
However, molded parts made from typical controlled rheology treated polypropylene tend to have inferior appearance and surface characteristics, and are often marred by flow marks such as tiger marks. Controlled rheology polypropylene has a narrow molecular weight distribution which results from the selective loss of longer molecular chains due to the action of the organic peroxides. This narrow molecular weight distribution does not permit good surface molding of the molded article due to the irregular flow of the molten polymer in the mold. This irregular flow will lead to the above-mentioned surface flaws. Therefore, the use of controlled rheology polypropylene in injection molding has been limited to applications that do not require good surface characteristics.
The addition of a high molecular weight component to the controlled rheology materials will improve the irregular flow in the mold. It is believed that this improvement occurs because of the broadened molecular weight distribution, however, the addition of the high molecular weight component sacrifices in turn the high MFR properties gained in controlled rheology treatment. Thus, there is a need in the art for a controlled rheology propylene polymers which have a high MFR and good surface characteristics when in injection molding.
SUMMARY
The present invention relates to controlled rheology propylene polymers which possesses a high MFR and good surface characteristics in molding applications. The controlled rheology (“CR”) propylene polymers include in their composition a propylene polymer and a cracking-resistant polymer, one which is capable of resisting the degradation by cracking agents.
In one embodiment, the invention relates to a CR propylene polymer composition which includes a propylene polymer and about 0.01% by weight to about 10% by weight of at least one cracking resistant polymer.
In one embodiment, the invention relates a method of making CR propylene polymers by polymerizing propylene in the presence of the cracking-resistant polymer to produce a cracking-resistant propylene polymer, wherein the at least one cracking-resistant polymer comprises 0.01% by weight to about 10% by weight of the CR propylene polymer. The rheology of the cracking-resistant propylene polymer can then be modified with at least one cracking agent. In one embodiment, the at least one cracking resistant polymer comprises from about 0.5% to about 1.0% by weight of the CR propylene polymer.
In one embodiment, the cracking agent is a free radical moiety or initiator. The cracking agent is typically selected from the group which includes peroxides, irradiation treatments, and electron beam treatments. Peroxides include both organic and inorganic peroxides, and irradiation includes using gamma or similar high energy irradiation. Typical examples of peroxides of the present invention may be selected from 2,5-dimethyl-2,5-di(t-butylperoxy)hexane; 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3; 3,6,6,9,9-pentamethyl-3-(ethyl acetate)-1,2,4,5-tetraoxy cyclononane; t-butyl hydroperoxide; hydrogen peroxide; dicumyl peroxide; t-butyl peroxy isopropyl carbonate; di-t-butyl peroxide; p-chlorobenzoyl peroxide; dibenzoyl diperoxide; t-butyl cumyl peroxide; t-butyl hydroxyethyl peroxide; di-t-amyl peroxide; and 2,5-dimethylhexene-2,5-diperisononanoate.
In one embodiment, the invention relates to a method of making CR propylene polymers, the method comprising, incorporating at least one cracking-resistant polymer into a propylene polymer, wherein the at least one cracking-resistant polymer comprises 0.01 to about 10% (by weight) of the propylene polymer, and modifying the rheology of the propylene with at least one cracking agent.
DETAILED DESCRIPTION
As used herein, the terms “propylene polymers” and “polypropylene” are used interchangeably, and generally include, but are not limited to, propylene homopolymers, copolymers, such as, for example, block, graft, impact, random and alternating copolymers, terpolymers, and the like, as well as blends and modifications thereof. Co-monomers typically included in the propylene include 1-butene, 1-hexene, ethylene, and other alpha-olefins. Furthermore, unless otherwise specifically limited, the terms “polypropylene” and “propylene polymer” includes all of the geometrical configurations of the material. These configurations include, but are not limited to, isotactic, syndiotactic, and atactic symmetries.
As used herein, the term “cracking-resistant polymers” includes polymers which, if treated as a neat polymer with peroxides or other cracking agents, increase or substantially maintain their intrinsic viscosity. Polymers with tertiary carbon atoms are most susceptible to degradation by free-radicals such as organic peroxides, and by gamma radiation or electron beam. Cracking agents withdraw hydrogen atoms from the polymer, causing it to break apart into shorter segments. Polymers without tertiary carbon atoms are less susceptible to such degradation. Propylene polymers, which have tertiary carbon atoms, will degrade by this mechanism, while ethylene polymers, which do not have tertiary carbon atoms, will not substantially degrade or reduce in average molecular weight upon exposure to a cracking agent.
In the present invention, the propylene polymer which is treated for controlled rheology, contains up to about 10% by weight of at least one cracking-resistant polymer. The cracking-resistant polymer has a high molecular weight (above about 1,000,000) and is relatively inert to chain scission by cracking agents. Although the MFR is effectively raised by controlled rheology, the cracking-resistant polymer stays intact to retain the desired smooth flowability of the molten polypropylene in the mold.
Cracking-resistant polymers such as polyethylene, polytetrafluoroethylene (PTFE) are preferred in the present invention as are other polymers which are resistant to peroxide or radiation-induced degradation, such as ethylene copolymers with alpha-olefins, preferably polypropylene, with an alpha-olefin content of less than 50% by weight, more preferably less than 30% by weight and most preferably less than 10%. The cracking-resistant polymer preferably is present in the propylene polymer in more than 0.01% and less than or equal to 10% by weight, more preferably in more than 0.05% and less than or equal to 5% by weight and most preferably in more than 0.1% and less than or equal to 2%.
Cracking-resistant polymers such as high, or ultra high, molecular weight polyethylene or polytetrafluoroethylene should preferably be in

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polypropylene materials with high melt flow rate and good... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polypropylene materials with high melt flow rate and good..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polypropylene materials with high melt flow rate and good... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3102544

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.