Polypropylene composition with broad MWD

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C525S322000, C525S323000

Reexamination Certificate

active

06300420

ABSTRACT:

Polypropylene copolymer has many characteristics which makes it desirable for applications ranging from food packaging (film, bottle) to more demanding applications like pipes, fittings, foams etc.
Polypropylene as piping material is mainly used in non-pressure applications (pipe and fittings) and profiles. There is a small volume used for pressure pipe, mainly hot water and industrial pipes. The good thermal resistance of polypropylene compared to other polyolefins is utilized for the pipe applications. All three main types of propylene polymer, i.e. homopolymers, random copolymers and block copolymers are used. Homopolymers give the pipe good rigidity but the impact and creep properties are not very good. The block copolymers give good impact properties but the creep properties are like homopolymers due to the homopolymer matrix. Propylene ethylene random copolymers are used for pressure pipe applications for hot water and industrial pipes. That is due to their improved creep resistance compared to propylene homopolymers and block copolymers.
The propylene-ethylene random copolymers for pressure pipes are today produced with high yield Ziegler-Natta catalysts in processes (bulk or gas phase) giving a material having a relatively narrow molecular weight distribution (MWD=M
w

M
n
) of about 5. The molecular weight (M
w
) of the pipe material with melt flow rate (MFR
2
) of 0.2-0.5 is about 1000000. This high molecular weight and the narrow MWD cause problems in compounding and extrusion of pipes. The processability of such materials is difficult due to the low shear sensitivity causing unwanted degradation of the material and melt fracture, which is seen as uneven surface and thickness variations of the pipes. In addition the conventional propylene random copolymer pipe materials produced in one phase have not strength enough for the short and long term properties (notch resistance and creep) needed for good pressure pipes.
The processability of the conventional propylene random copolymers can be improved by broadening the MWD using multi-stage polymerization process. In multi-stage polymerization the MWD of polymer can be broadened by producing different molecular weight polymers in each stage. The MWD of polymer becomes broader when lower molecular weight is reactor-blended into the higher molecular weight polymer adjusting the final MFR by choosing the right molecular weight and reactor split in each stage. The molecular weight of polymer in each step could be controlled by hydrogen which acts as a chain transfer agent. Reactor temperature may be also used for controlling the molecular weight of polymer in each step. Multi-stage polymerization is disclosed e.g. in patent application WO 91 014 718.
It has been recognised that high yield Ziegler-Natta catalysts give an uneven ethylene comonomer distribution to propylene random copolymers. It has been confirmed by fractionation methods that the high molecular weight chains content less ethylene than the low molecular weight chains (FIG.
1
). When the low molecular chains have a high ethylene content the solubility is also increased. This gives particulary a great problem when the polymerisation is carried out in a hydrocarbon diluent. Low molecular weight fraction affects negatively the taste and odour of the pipe materials.
When the processability is improved by producing broader MWD propylene random copolymer, also the amount of low molecular fraction is increased if the comonomer feeds are the same in each stage. The taste and odour are affected.
For these reasons several polypropylene producers are producing the pipe material in a one-stage slurry process with TiCl
3
catalysts. In a slurry process the molecular weight distribution of polypropylene is broader, but the yield are lower and the reactor diluent solubility increases when the needed amount of comonomer, e.g. ethylene or butene-1, is increased. Also the comonomer distribution is usually better in a slurry process with TiCl
3
catalysts than with high yield catalysts.
This invention describes especially the production of propylene random copolymer pipe materials with the similar or even better properties than the material produced with TiCl
3
-catalyst in a slurry process but with improved production economy. By using the concept invented with high yield TiCl
4
-catalyst it is possible to produce pipe material having improved mechanical and pipe properties and also a good extrudability. The improved strength properties of the material come from a very high molecular weight fraction of Mw=2,000,000-4,000,000 (MFR
2
=0.01-0.08) and an improved comonomer distribution together with a broad molecular weight distribution.
The invented concept is based on the idea of producing a broad MWD and a high molecular weight propylene random copolymer and improved comonomer distribution using high yield catalysts in two or several reactors at different reaction conditions. The comonomers incorporated in long chains as described in this invention destroy the regularity of the chains leading to the more homogenous distribution of the essential tie-chains and entanglements needed for creep properties and toughness in pipe materials.
The problem with the uneven comonomer distribution with high yield TiCl
4
-catalysts is solved in a way that the amount of comonomer is split between the reactors. To the reactor where the high molecular weight propylene polymer is produced is fed more comonomer than to the reactor where the low molecular PP is produced. Higher amounts of comonomer can be fed because the solubility of the high molecular weight polymer is lower. The final comonomer content is adjusted by controlling the comonomer feeds into the reactors. In this way produced propylene copolymers have a more even comonomer distribution than the conventional propylene random copolymers produced with high yield TiCl
4
-catalysts.
The product is a copolymer of propylene and at least one 2-12 C alpha olefin or their mixture, preferably especially 2-6 C alpha olefin, containing 2.0-10.0 w-%, preferably 3.0-6.0 w-% of comonomer, and having a melt flow rate (MFR) of 0.05-2.5 g/10 min (2.16 kg load), preferably 0.1-0.5 g/min (2.16 kg load) a flow rate ratio, MFR (10 kg load)/MPR (2.16 kg load) of > or =15-40, preferably MFR (10 kg load)/MFR (2.16 kg load)=16-26, and a MWD of 6-15.
The product is a reactor blend with a broad MWD comprising of two different molecular weight copolymer matrices. The high molecular weight matrix is produced in one reactor and the lower molecular weight matrix in the other reactor or reactors. The comonomer concentration in the reactor where the higher molecular weight copolymer is produced is higher than the comonomer concentration in the other reactor or reactors. Therefore the copolymer is a reactor blend of A and B:
A) 40-70 w-% produced in the stage where the higher molecular weight matrix is produced with a comonomer content of 3-10 w-%, preferably 4-6 w-%,
B) 60-30 w-% produced in the stage or stages where the lower molecular weight matrix is produced with comonomer content of 2-6 w-% ,preferably 2-3 w-%.
Hydrogen and/or polymerisation temperature are used to control the molecular weights together with the catalyst composition. This copolymer can be produced in a multi-stage polymerisation process having at least two reactors operating in series. Different combination of polymerisation reactors such as gas phase-gas phase, slurry-slurry, bulk-gas phase, bulk-bulk, etc can be applied.
All kind of stereoregular, high yield Ziegler-Natta catalysts can be used in the polymerisation. The catalysts can be prepolymerised, for example with ethylene or propylene, but there is not any limitation to use unprepolymerized catalyst either. All kinds of catalyst compositions with different external donors can be used.
The comonomer in the propylene copolymer can be ethylene, butene-1, hexene-1, 4-methyl-1-pentene, octene-1 and decene-1 or combinations of them.
The broadness of the molecular weight distribution can be measured by the flo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polypropylene composition with broad MWD does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polypropylene composition with broad MWD, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polypropylene composition with broad MWD will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2596203

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.