Polypropylene-based adhesive compositions

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C526S348000, C526S348500, C526S348600, C525S240000, C525S326100, C525S333700, C525S333800

Reexamination Certificate

active

06747114

ABSTRACT:

FIELD OF INVENTION
The present invention relates to the use of propylene copolymers in adhesive applications. A specific embodiment of the invention is directed to copolymers of propylene and ethylene or propylene and at least one C
4
to C
20
&agr;-olefin, preferably a C
4
to C
8
&agr;-olefin where the propylene is the predominant monomer and the copolymer is semi-crystalline. Another specific embodiment of the invention relates to adhesive compositions and methods for making adhesive compositions with polymers or polymer blends having melt flow rates (MFRs) of 250 dg/min. at 230° C. and higher. Certain specific embodiments of the invention involve the use of a free radical initiator, e.g., a peroxide.
BACKGROUND
Hot-melt adhesives are thermoplastic materials that can be heated to a melt and then applied to various substrates. A bond is formed upon cooling and resolidification. Among the most widely used thermoplastic polymers in hot-melt adhesives is ethylene-vinyl acetate copolymer (“EVA”) which is combined with a variety of plasticizers, tackifiers, antioxidants, waxes, and extenders for purposes of improving and/or controlling the viscosity, adhesive properties, shelf-life, stability and cost. Plasticizers have typically included such compounds as polybutenes and phthalates, tackifiers have typically included such compositions as rosin esters and hydrocarbon resins, antioxidants are frequently based upon the known hindered phenol compounds, and wax helps to reduce the melt viscosity in addition to reducing costs.
These hot-melt adhesives have the drawback of often becoming brittle below the glass-transition temperature. Historically, ethylene based semi-crystalline polymers like polyethylene and ethylene vinyl acetate (EVA), have been used in various adhesive applications; however, such polymers have many problems in their end use applications. For example, semi-crystalline linear low density polyethylene (LLDPE) can be used in hot melt adhesive applications where the crystalline network formed on cooling makes a good adhesive free of tack, but the high level of crystallinity causes the material to be brittle. For this reason other monomers, such as vinyl acetate (VA), or alpha-olefins are often co-polymerized with ethylene to break up some of the crystallinity and soften the adhesive. Thus the use of hot-melt adhesives based upon EVA is limited when low temperature conditions of use are desired.
Styrene block copolymers (“SBC”) are independently known as an important class of base polymers for adhesive compositions, particularly for such uses as in hot melt pressure sensitive adhesives in tapes, label stock, diaper assembly and the like. However, because of higher melt viscosities than EVA based compositions, SBC based adhesive compositions are not typically used for packaging where high-speed application is economically desirable.
Certain adhesive composition blends of SBC and EVA are known, even though the base polymers are largely incompatible, in the sense of not being able to form stable blends largely free of separation or stratification and resulting nonuniformity of properties. U.S. Pat. No. 4,345,349 describes book-binding hot-melt adhesive compositions prepared from 15-30% SBC, 5-10% EVA, 25-40% rosin ester tackifier, 25-35% wax diluent and 0.5-3% of a stabilizer, e.g., hindered phenol compound. The ratio of SBC to the ethylene vinyl acetate copolymer is from 1.75/1 to 6/1. The low-temperature flexibility improves by increasing the amount of SBC in the composition and using a high softening point tackifier or high melting point wax shortens setting speed. Setting time, in order to be useful in the described bookbinding process, is to be within 30 seconds, and times within 26 seconds are exemplified. U.S. Pat. No. 4,394,915 describes a hot melt adhesive particularly suitable for polyethylene-terepthalate bottle assemblies comprising typically 20-40% SBC, 5-20% EVA, 30-60% tackifying resin, 10-30% wax or oil, and 0.1-4% stabilizer. The tackifying resin can be any of a number of available rosins or resins, including the aliphatic petroleum resins, but is preferably a polymerized tall oil rosin.
PCT/US97/04161 teaches the use of ethylene based copolymers as hot melt adhesive and these materials are useful in some applications, but suffer in that they have higher melt viscosity, poorer processing and poorer adhesion to some types of surfaces than propylene based copolymers. U.S. Pat. No. 5,118,762 addresses the industrial need for hot melt adhesives that have a low melt viscosity and high temperature resistance to shear. The solution in this document is the use of a predominantly branched styrene-isoprene-styrene (SIS) triblock copolymer with a tackifying resin that is compatible with the elastomeric isoprene block, e.g., diene-olefin copolymer resins, rosin esters or saturated petroleum resins, e.g., hydrogenated dicyclopentadiene resins such as ESCOREZ® 5000 series resins of the ExxonMobil Chemical Company.
Blends of isotactic polypropylene and ethylene propylene rubber are well known in the prior art, prior art Ziegler-Natta catalyst systems could only produce ethylene propylene rubber compositions with greater than 30% by weight ethylene at practical, economic polymerization conditions. There exists a need for polymeric materials which have advantageous processing characteristics while still providing suitable end properties to articles formed therefrom, e.g., tensile and impact strength. Copolymers and blends of polymers have been developed to try and meet the above needs. U.S. Pat. No. 3,882,197 to Fritz et al. describes blends of stereoregular propylene/alpha-olefin copolymers, stereoregular propylene, and ethylene copolymer rubbers. In U.S. Pat. No. 3,888,949 Chi-Kai Shih, assigned to E I DuPont, shows the synthesis of blend compositions containing isotactic polypropylene and copolymers of propylene and an alpha-olefin, containing between 6-20 carbon atoms, which have improved elongation and tensile strength over either the copolymer or isotactic polypropylene. Copolymers of propylene and alpha-olefin are described wherein the alpha-olefin is hexene, octene or dodecene. However, the copolymer is made with a heterogeneous titanium catalyst which makes copolymers which are non-uniform in compositional distribution and typically broad in molecular weight distribution. Compositional distribution is a property of copolymers where there exists statistically significant intermolecular or intramolecular difference in the composition of the polymer.
In U.S. Pat. No. 4,461,872, A. C. L. Su improved on the properties of the blends described in U.S. Pat. No. 3,888,949 by using another heterogeneous catalyst system. However, the properties and compositions of the copolymer with respect to either the nature and type of monomers (alpha-olefin containing 6-20 carbon atoms) or the blocky heterogeneous intra/inter molecular distribution of the alpha-olefin in the polymer have not been resolved since the catalysts used for these polymerization of propylene and alpha-olefin are expected to form copolymers which have statistically significant intermolecular and intramolecular compositional differences.
In two successive publications in the journal of Macromolecules, 1989, v22, pages 3851-3866, J. W. Collette of E. I. DuPont has described blends of isotactic polypropylene and partially atactic polypropylene which have desirable tensile elongation properties. However, the partially atactic propylene has a broad molecular weight distribution as shown in FIG. 8 of the first publication. The partially atactic polypropylene is also composed of several fractions, which differ in the level of tacticity of the propylene units as shown by the differences in the solubility in different solvents. This is shown by the corresponding physical decomposition of the blend which is separated by extraction with different solvents to yield individual components of uniform solubility characteristics as shown in Table IV of the above publications.
In U.S. Pat. Nos. 3,853,969 and 3,378,606, E. G. K

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polypropylene-based adhesive compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polypropylene-based adhesive compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polypropylene-based adhesive compositions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3348637

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.