Polypeptide compound which binds to glyco-conjugates and to arti

Chemistry: natural resins or derivatives; peptides or proteins; – Peptides of 3 to 100 amino acid residues – 15 to 23 amino acid residues in defined sequence

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

530402, 530403, 530404, 530405, C07K 700

Patent

active

052833216

DESCRIPTION:

BRIEF SUMMARY
The present invention relates to a new polypeptide, to an artificial compound, selected from the new peptide and functional analogues and derivatives of the peptide, in free or carrier-associated form with the capability of bindning to glyco-conjugates, especially immunoglobulins, to artificial pertussis toxin antigens, which mainly consist of peptide sequences reacting with antibodies induced by the native pertussis toxin selected from the new polypeptide and parts thereof, to a diagnostic immunoassay kit comprising as a diagnostic antigen, said antigens reacting with antibodies induced by the native pertussis toxin, to a vaccine composition comprising as an immunizing component antigens selected from said antigens reacting with antibodies induced by the native pertussis toxin, and to an intradermal skin test composition comprising antigens selected from said antigens reacting with antibodies induced by the native pertussis toxin.


BACKGROUND

In the field of immunology it is well known that most biological organisms produce specific proteins which selectively and specifically recognize various protein and/or carbohydrate structures. Examples of such specific proteins derived from bacteria are Protein A and Protein G which both bind to certain immunoglobulins from various species. Examples of such specific proteins derived from plants or lower invertebrates are so-called lectins which bind to carbohydrate structures of immunoglobulins and other glyco-conjugates. Examples of such lectins are Concanavalin A, Wheat germ agglutinin, Phytohaemagglutinin and Helix pomatia lectin.
Each of the above mentioned specific proteins bind to a specific group of protein structures and/or carbohydrate structures.
The present invention provides an artificial compound which has the capability of binding to glyco-conjugates, especially immunoglobulins.
Up to now no peptide antigens constituting part of pertussis toxin have been identified in the art. Since such antigens have not been provided, it has not been possible to develop diagnostic immunoassay kits comprising such antigens as diagnostic antigens nor to develop vaccines against whooping cough based on such antigens.
Diagnosis of whooping cough with the aid of antigens directed against Bordetella pertussis antibodies or proteins produced by B. pertussis have been published, but as diagnostic antigen there has been used fimbrial hemagglutinin (see e.g. Granstrom, M., Granstrom, G., Lindfors, A, and Askelof, P. 1982. Serologic diagnosis of whooping cough by an enzyme-linked immunosorbent assay using fimbrial hemagglutinin as antigen. J. Infect. Dis. vol 146: 741-745), or sonicated B. pertussis bacteria (see e.g. Goodman, Y. E., Wort, A. J. and Jackson, F. L. 1981. Enzyme-linked immunosorbent assay for detection of pertussis immunoglobulin A in nasopharyngeal secretions as an indicator of recent infection J. Clin. Microbiol. vol. 13: 286-292, and Viljanen, M. K., Ruuskanen, O., Granberg, C. and Salmi, T. T. 1982. Serological diagnosis of pertussis: IgM, IgA and IgG antibodies against Bordetella pertussis measured by enzyme-linked immunosorbent assay. Scand. J. Infect. Dis. vol. 14: 112-117).
As is well known in the art currently used vaccines against whooping cough are in USA and many other countries based on inactivated Bordetella pertussis bacteria. M. Pittman proposed 1979 that whooping cough was mediated by an exotoxin (pertussis toxin) (see Pittman, M. 1979. Pertussis toxin: The cause of the harmful effects and prolonged immunity of whooping cough. A hypothesis. Rev. Infect. Dis. vol. 1:401-412) and in Japan acellular vaccines comprising inactivated pertussis toxin are currently in use.
Recently the nucleotide sequence of pertussis toxin was published (Locht, C. and Keith, J. M., 1986. Pertussis Toxin Gene: Nucleotide Sequence and Genetic Organization, Science, vol. 232, p. 1258-1264). In this article the authors suggest i.a. that synthetic oligopeptides that include protective epitopes also will be useful in the development of a new generation of vaccines, but ther

REFERENCES:
patent: 4883761 (1989-11-01), Keith et al.
patent: 5000952 (1991-03-01), Steinman et al.
Mehra et al. (1986) Proc. Natl. Acad. Sci. 83, 7013-7017.
Frank et al. (1984) Infect. Immune 46(1), 195-201.
Sato et al. (1984) Infect. Immune. 46(2) 422-428.
Perera et al. (1986) J. Gen. Microbiol. 132, 553-556.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polypeptide compound which binds to glyco-conjugates and to arti does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polypeptide compound which binds to glyco-conjugates and to arti, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polypeptide compound which binds to glyco-conjugates and to arti will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-580503

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.