Coating processes – With post-treatment of coating or coating material – Solid treating member or material contacts coating
Reexamination Certificate
2000-02-14
2002-08-20
Cameron, Erma (Department: 1762)
Coating processes
With post-treatment of coating or coating material
Solid treating member or material contacts coating
C427S407300, C427S421100, C427S428010, C427S443200, C428S378000, C428S426000
Reexamination Certificate
active
06436476
ABSTRACT:
TECHNICAL FIELD AND INDUSTRIAL APPLICABILITY OF THE INVENTION
The present invention relates to a process of making a composite article and a composition for coating glass or other fiber reinforcement so as to improve the fiber's compatibility and adhesion to a polyolefin resin.
BACKGROUND OF THE INVENTION
A ring opening metathesis polymerization reaction (ROMP) can polymerize cycloolefins. The cycloolefins usually must be polymerized in the presence of a ROMP catalyst to solidify the composite. ROMP catalysts for polymerization of cycloolefins include ruthenium or osmium carbene compounds, which have proven to be highly effective at initiating ROMP polymerization of cycloolefins. Such catalysts are described, for example, in U.S. Pat. Nos. 5,312,940, 5,342,909, 5,831,108, 5,849,851 and 5,939,504, which are herein incorporated by reference. These catalysts demonstrate a high level of metathesis activity in contrast to previous non-carbene ruthenium and osmium compounds, which were limited by their ability to catalyze only sterically strained cycloolefins. Further, these ruthenium and osmium catalysts do not require the additional use of co-catalyst compounds, and do not suffer from intolerance to moisture.
However, a significant drawback of using these ruthenium and osmium carbene catalysts in the polymerization of typical composite formulations containing cycloolefin resins such as dicyclopentadiene (DCPD), is that the ingredients typically used to prepare the fiber reinforcement material poison these carbene catalysts, thereby reducing or eliminating their effectiveness. The term “poison,” as it is used herein with respect to the ingredients used to prepare fiber reinforcement materials, is intended to mean that these ingredients inhibit, slow, prevent or terminate the desired polymerization reaction. For example, some components of conventional sizing or finishing formulations, such as polymers, lubricants and other additives are poisonous to the osmium and ruthenium carbene catalysts and therefore hinder the catalytic reaction needed to cure the resin.
Prior art coating compositions, including sizing and finishing compositions, have not been found that exhibit compatibility with resin matrices cured via ROMP catalysts. While the prior art does teach manufacturing fiber-reinforced composites via ROMP catalysts, such as found in U.S. Pat. No. 5,840,238, herein incorporated by reference, the prior art processes result in an end product that is soft and rubbery, instead of being a hardened and resilient composite. Moreover, the end products of the prior art composites cured via ROMP catalysts also typically exhibit voids around the fibers, which causes the wicking of fluids through or along the composite walls. This incompatibility between the sizing or finish and the catalyst is a significant problem in the art, which has not been addressed.
There is, therefore, a need in the art for a coating composition for reinforcing fibers that is compatible with ROMP catalysts used to cure cycloolefin resins. It is desirable that such a coating composition should also result in composites that exhibit properties indicative of improved adherence between the fibers and the resin matrix, including reduced or negligible wicking, reduced CTE, and increased burst or shear strength.
SUMMARY OF THE INVENTION
The present invention relates to a method of making a composite article comprising:
coating a fiber material with a coating composition comprising a silane, an optional pH modifying agent, and an optional lubricant, wherein said silane is compatible with one or more ring opening metathesis polymerization (ROMP) catalysts used to initiate ring opening metathesis polymerization of the cycloolefin resins, to form a coated fiber material;
contacting the coated glass fiber with an uncured cycloolefin resin and one or more ROMP catalysts, to form a resin, catalyst and fiber mixture; and
curing the resin, catalyst and fiber mixture to form the composite article.
The fiber may be heat-treated or heat-cleaned prior to being coated with the coating composition.
The invention also relates to a coated reinforcing fiber material produced according to the process of the present invention.
The present invention further relates to a molded composite article comprising (i) a reinforcing fiber material coated with the coating composition of the present invention, and (ii) a cycloolefin resin polymerized using a ROMP catalyst.
In another embodiment, the invention relates to a coating composition comprising a silane selected from the group consisting of N-2-(vinylbenzylamino)-ethyl-3-aminopropyl-trimethoxysilane, vinyl trimethoxysilane, 3-methacryloxy-1-propyl-trimethoxy silane, norbornenyl triethoxy silane, and norbornenyl methoxy silane; an optional pH modifying agent; and an optional non-ionic or cationic lubricant. The coating composition of the present invention has been shown to be compatible with dicyclopentadiene (DCPD) or other polyolefinic resin-based thermosetting composites that are cured via ROMP and/or free radical induced polymerization. Moreover, the use of this coating composition has demonstrated an improved compatibility with a matrix of polyolefinic resin cured by ROMP, reducing or eliminating voids around the fibers and thereby reducing or preventing wicking of fluids through the composite walls.
The invention additionally comprises a composite article comprising a coated reinforcing fiber material coated with the coating composition of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION
The present invention relates to a coating composition that is highly compatible with ROMP catalysts used in the ring opening metathesis polymerization of cycloolefins. The composition for coating the glass or other fibers has a silane, optional pH modifying agent, and an optional non-ionic or cationic lubricant. The thermosetting polyolefin resin matrix is cured with ROMP catalysts. The coating composition of the present invention is compatible with the ROMP catalysts and improves the adhesion between the fibers and the matrix. The use of this invention produces composites with reduced wicking or no wicking, low thermal expansion with heat, and improved shear and tensile strength.
A “coating” composition, as used herein, refers to a chemical treatment applied to fibers to improve the fibers' compatibility with resin systems used as the matrix in a composite. In particular, the coating is used to improve the processing characteristics of the fiber in whatever process the fiber is subsequently used in next. For example, the coating composition may be a “finish” or chemical mixture that can be applied to a knitted or woven fabric or cloth so as to improve the compatibility of the fabric or cloth with certain resin systems. In this context, the coating composition may be applied to the fabric or cloth after the fabric or cloth has had the sizing removed, for example, by heat cleaning. In another example, the coating may be a “sizing” or chemical mixture that is applied to continuous filaments as they are produced either by spray coating, dip coating, pad coating, or a “kiss” roller. The coating composition is formulated to be chemically compatible with certain resin systems, which are used as the matrix in a composite. The coating composition can further be used as a “binder”, which is used to hold together chopped strands or continuous strands in the formation of a mat. Fibers treated with the coating composition of the present invention may be used as the reinforcement in a composite. Other examples of the use of the coating composition of the present invention would be readily acknowledged by one having ordinary skill in the art.
The term “compatible”, as used herein, is intended to mean that the coating does not poison the catalyst or interact, in any other way, so as to substantially diminish the effectiveness of the catalyst when it is added to the cycloolefin resin. Moreover, the coating composition, when applied to reinforcing fiber materials used in com
Barns Stephen W.
Cameron Erma
Dottavio James J.
Eckert Inger H.
Owens Corning Fiberglas Technology Inc.
LandOfFree
Polyolefin fiber-reinforced composites using a fiber coating... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Polyolefin fiber-reinforced composites using a fiber coating..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polyolefin fiber-reinforced composites using a fiber coating... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2909842