Polyolefin composition with improved impact properties

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C525S192000, C525S194000, C525S197000, C525S212000, C525S240000, C525S261000, C525S323000

Reexamination Certificate

active

06472473

ABSTRACT:

BACKGROUND
To improve the impact properties of polypropylene homopolymers (and random copolymers), an elastomeric component is typically added, either by way of the production of an in-reactor blend of a propylene polymer and an elastomeric component (an impact propylene copolymer) or by way of compounding of a propylene polymer and an elastomeric component. In the former method the propylene polymer and the elastomeric component are produced in one or more reactors of the same process.
Both of these methods of improving the impact of polypropylene do not significantly contribute to increasing the melt strength of the resulting polypropylene impact copolymer.
And although both methods result in a propylene polymer with improved impact properties (when formed into articles), these impact properties often show an imbalance between the notched impact tested parallel to the polymer injection flow direction of the injection molded product, and the notched impact tested perpendicular to the polymer injection flow direction of the injection molded product. The notched impact tested on specimens cut perpendicular to the direction of orientation (that is perpendicular to the polymer injection flow direction), with the notch in the direction of orientation (parallel to the polymer injection flow direction), is typically much lower. The polymer injection flow direction is the direction or line along which the polymer is introduced into a mold or the direction or line along which the polymer is extruded. Polymers such as propylene polymers will tend to orient themselves along this line of direction.
What is desired is a polymer resin, which provides directionally balanced impact properties for articles made from the resin, while simultaneously having increased melt strength. Additionally, it would be desirable to provide a polymer resin, which is easy to fabricate into articles and exhibits a ductile-to-brittle transition temperature of 0° C. or lower.
As used herein, the following terms shall have the following meanings:
“Coupling agent” means a chemical compound that contains at least two reactive groups that are each capable of forming a carbene or nitrene group that are capable of inserting into the carbon hydrogen bonds of CH, CH2, or CH3 groups, both aliphatic and aromatic, of a polymer chain. The reactive groups together can couple polymer chains. It may be necessary to activate a coupling agent with heat, sonic energy, radiation or other chemical activating energy, for the coupling agent to be effective for coupling polymer chains. Examples of chemical compounds that contain a reactive group capable of forming a carbene group include, for example, diazo alkanes, geminally-substututed methylene groups, and metallocarbenes. Examples of chemical compounds that contain reactive groups capable of forming nitrene groups, include, but are not limited to, for example, phosphazene azides, sulfonyl azides, formyl azides, and azides.
“Impact propylene copolymers” are commercially available and are well known within the skill in the art, for instance, as described by E. P. Moore, Jr in Polypropylene Handbook, Hanser Publishers, 1996, page 220-221 and U.S. Pat. Nos. 3,893,989 and 4,113,802. The term “impact propylene copolymer” is used herein to refer to heterophasic propylene copolymers where polypropylene is the continuous phase and an elastomeric phase is dispersed therein. Those of skill in the art recognize that this elastomeric phase may also contain crystalline regions, which for purposes of the current invention are considered part of the elastomeric phase. The impact propylene copolymers result from an in-reactor process rather than physical blending. Usually the impact propylene copolymers are formed in a dual or multi-stage process, which optionally involves a single reactor with at least two process stages taking place therein, or optionally multiple reactors.
“Impact properties” refer to properties of articles such as impact strength, which is measured by any means within the skill in the art, for instance, Izod impact energy as measured in accordance with ASTM D 256, MTS Peak Impact Energy (dart impact) as measured in accordance with ASTM D 3763-93, and MTS total Impact Energy as measured in accordance with ASTM D-3763. The ductile-to-brittle transition temperature (DBTT) is also an impact property of an article made from a polymer. The ductile-to-brittle transition temperature defines, for a given set of conditions, the temperature at which an object transitions from a predominantly ductile mode of failure to a predominantly brittle mode of failure. The ductile-tobrittle transition temperature can be calculated using techniques known to one of skill in the art.
SUMMARY OF THE INVENTION
The invention includes a composition comprising a coupled impact propylene copolymer. The coupled impact propylene copolymer is formed by the reaction of a coupling agent, such as a bis(sulfonyl azide), with an impact propylene copolymer. Advantageously, the impact propylene copolymers used for the invention have at least about 5 weight percent, preferably at least about 9 weight percent, more preferably at least about 13 weight percent, of an elastomeric phase based on the total weight of the impact propylene copolymer. Preferably, the elastomeric phase is less than about 45 weight percent, more preferably less than about 40 weight percent, most preferably less than about 35 weight percent, of the total weight of the impact propylene copolymer.
When the continuous phase of the impact propylene copolymer is a homopolymer propylene polymer and the elastomeric phase is comprised of a copolymer or terpolymer containing monomer units derived from ethylene, the impact propylene copolymer preferably contains at least about 5 weight percent, more preferably at least about 7 weight percent, most preferably at least about 9 weight percent —CH2CH2— units derived from ethylene monomer based on the total weight of the impact propylene copolymer. Preferably, such an impact propylene copolymer contains less than about 30 weight percent, more preferably less than about 25 weight percent, most preferably less than about 20 weight percent —CH2CH2— units derived from ethylene monomer based on the total weight of the impact propylene copolymer.
The invention also includes a method for coupling an impact propylene copolymer using a coupling agent, such as a bis(sulfonyl azide). The method improves the impact properties of the impact propylene copolymer and also increases the melt strength of the resulting coupled impact propylene copolymer resin to a level of at least about 1.25 times, preferably at least about 1.5 times, that of a comparable noncoupled impact propylene copolymer. All values for “melt strength” are determined by the method as set forth in the Examples. A comparable noncoupled impact propylene copolymer is the same polymer used to make the coupled impact propylene copolymer, but has not been coupled. Preferably, the coupled impact propylene copolymer resins have a melt strength of at least about 8, more preferably a melt strength of at least about 15 cN, further more preferably a melt strength of at least about 30 cN, most preferably a melt strength of at least about 50 cN and in some instances a melt strength of at least about 60 cN.
Examples of impact properties that are improved in the coupled impact propylene copolymer of the invention compared to the comparable noncoupled impact propylene copolymers, include: higher impact strength at low temperatures as exhibited by articles formed from the coupled impact propylene copolymer and an improvement in the ductile-to-brittle transition temperature, which is reduced in articles formed from the coupled impact propylene copolymer of the invention.
Additionally, in all aspects, articles formed from the coupled impact propylene copolymer of the invention exhibit an improvement in the directional balance of the impact properties as compared to articles formed from a comparable noncoupled impact propylene copolymer. (i.e. a reduction of the imbalance betwee

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polyolefin composition with improved impact properties does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polyolefin composition with improved impact properties, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polyolefin composition with improved impact properties will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2981118

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.