Polynucleotides encoding chemokine &bgr;-15

Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Recombinant dna technique included in method of making a...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S069100, C435S320100, C435S252300, C435S325000, C536S023500, C536S023100

Reexamination Certificate

active

06503735

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a human CC chemokine protein (i.e., a cytokine having the first two of its four cysteine residues adjacent as indicated by “CC”) and to polynucleotides encoding this protein.
2. Background Information
The discovery of IL-8, in 1987, revealed the existence of a novel class of small cytokines, now called chemokines, that are widely studied because of their ability to activate leukocytes and their potential role as mediators of inflammations. A number of different human chemokines have been identified after IL-8, by cloning or biochemical purification and amino acid sequencing. All have four conserved cysteines that form characteristic disulfide bonds, a short amino-terminal and a longer carboxy-terminal sequence. Two subfamilies are distinguished by the arrangement of the first two cysteines, which are either separated by one amino acid (CXC chemokines) or are adjacent (CC chemokines.). Chemokine cDNAs typically encode proteins of 92-99 amino acids in length that are secreted after cleavage of a leader sequence of 20-25 amino acids. Modeling on the basis of the NMR-derived structure of IL-8 suggests that CXC and CC chemokines are folded in a similar manner.
The first human CC chemokine was identified by differential hybridization cloning and was termed LD78 (Obaru, K. Fukuda, M., Maeda, S. and Shimada, K. (1986) J. Biochem. (Tokyo) 99, 885-894.) Several cDNA isoforms of a closely related human chemokine, Act-2, were later described (Miller, M. D. and Krangel, M. S. (1992) Crit. Rev. Immunol. 12, 17-46), and two similar proteins, macrophage inflammatory protein 1&agr; (MIP-1&agr;) and MIP-1&bgr;, were purified form the culture medium of lipopolysaccharide (LPS)-stimulated mouse macrophages (Wolpe, S. D., Davatelis, G. Sherry, B. et al. (1988) J. Exp. Med. 167, 570-581). On the basis of more than 70% amino acid identity, the murine and human proteins are considered as homologs, and the terms human MIP-1&agr; and MIP-1&bgr; are commonly used instead of LD78 and Act-2. The best characterized CC chemokine is monocyte chemotactic protein 1 (MCP-1), which was purified and cloned from different sources (Miller, M. D. and Krangel, M. S. (1992) Crit. Rev. Immunol. 12, 17-46; Yoshimure, T. Robinson, E. A. Tanaka, S. Appella, E. and Leonardo, E. J. (1989) J. Immunol. 142, 1956-1962; Matsushima, K., Larsen, C. G., DuBois, G. C. and Oppenheim, J. J. (1989) J. Exp. Med. 169, 1485-1490). Other CC chemokines, I-309 (Miller, M. D., Hata, S., De Waal Malafyt, R. and Krangel, M. S. (1989) J. Immunol. 143, 2907-2916), RANTES (Schall, T. J. Jongstra, J., Dyer, B. J. et al. (1988) J. Immunol. 141, 1018-1025) and HC14 (Chang, H. C., Hsu, F., Freeman, G. J., Griffin, J. D. and Reinherz, E. L. (1989) Int. Immunol. 1, 388-397), were purified or cloned as products of activated T cells. HC14, termed MCP-2, was also isolated from osteosarcoma cell cultures (Van Damme, J. Proost, P., Lenaerts, J-P. and Opdenakker, G. (1992) J. Exp. Med. 176, 59-65), along with a novel CC chemokine, MCP-3, which was subsequently cloned and expressed (Minty, A. Chalon, P. Guillemot, J. C. et al. (1993) Eur. Cytokine Netw. 4, 99-110; Opdenakker, G. Froyen, G. Fiten, P., Proost, P. and Van Damme, J.(1993) Biochem. Biophys. Res. Commun. 1991, 535-542). These CC chemokines share a sequence identify with MCP-1 of between 29 and 71% (MCP-2 and MCP-3 have 62-71% identity with MCP-1).
MCP-1, the prototype of the CC chemokine sub-family, is chemotatic for monocytes but not for neutrophils (Yoshimure, T. Robinson, E. A. Tanaka, S. Appella, E. and Leonardo, E. J. (1989) J. Immunol. 142,1956-1962; Matsushima, K., Larsen, C. G., DuBois, G. C. and Oppenheim, J. J. (1989) J. Exp. Med. 169, 1485-1490) and was initially considered to be a counterpart of IL-8. Indeed, monocytes respond to all CC chemokines, as judged from stimulus-dependent [Ca
2+
]i changes (Miller, M. D. and Krangel, M. S. (1992) Crit. Rev. Immunol. 12, 17-46; Bioschoff, S. C., Krieger, M. Brunner, T. et al. (1993) Eur. J. Immunol. 23, 761-767; McColl, S. R., Hachicha, M., Levasseur, S., Noete, K. and Schall, T. J. (1993) J. Immunol. 150, 4550-4560). MCP-1, MCP-2 and MCP-3 induce monocyte infiltration on intradermal injection into rats and rabbits (Van Damme, J. Proost, P., Lenaerts, J-P. and Opdenakker, G. (1992) J. Exp. Med. 176, 59-65; Zacha, C. O. C., Anderson, A. O., Thompson, H. L. et al. (1990) J. Exp. Med. 171,2177-2182), and MCP-1 also elicits in monocytes a respiratory burst (Miller, M. D. and Krangel, M. S. (1992) Crit. Rev. Immunol. 12, 17-46) and the expression of &bgr;2 integrins (Jiang, Y., Beller, D. I., Frendl, G. and Graves, D. T. (1992) J. Immunol. 148, 2423-2428).
While the view that CXC chemokines act on neutrophils and CC chemokines act on monocytes apparently remains valid, recent studies have revealed that CC chemokines have a much wider range of biological activities since they can also activate some lymphocytes and, in particular, basophil and eosinophil leukocytes. Thus, there is a continuing need in the art for isolating novel CC chemokines.
SUMMARY OF THE INVENTION
The present invention provides isolated nucleic acid molecules comprising a polynucleotide encoding a human chemokine &bgr;-15 (CK&bgr;-15) polypeptide having the amino acid sequence in
FIGS. 1A-1C
[SEQ ID NO:2] or the amino acid sequence encoded by the cDNA clone deposited as ATCC Deposit Number 97519 on Apr. 25, 1996. The nucleotide sequence determined by sequencing the deposited CK&bgr;-15 cDNA clone, which is shown in
FIGS. 1A-1C
[SEQ ID NO:1], contains an open reading frame encoding a polypeptide of about 149 amino acid residues including an initiation codon at positions 1-3, a leader sequence of about 20 amino acid residues and a deduced molecular weight of about 16 kDa. The 129 amino acid sequence of the predicted mature CK&bgr;-15 protein is shown in
FIGS. 1A-1C
(amino acid residues from about 21 to about 149) and in SEQ ID NO:2 (amino acid residues from about 1 to about 129).
Thus, one aspect of the invention provides isolated nucleic acid molecules comprising a polynucleotide having a nucleotide sequence selected from the group consisting of: (a) a nucleotide sequence encoding the chemokine &bgr;-15 polypeptide having the complete amino acid sequence in SEQ ID NO:2; (b) a nucleotide sequence encoding the chemokine &bgr;-15 polypeptide having the complete amino acid sequence in SEQ ID NO:2 but lacking the N-terminal methionine residue; (c) a nucleotide sequence encoding the mature chemokine &bgr;-15 polypeptide having the amino acid sequence at positions from about 1 to about 129 in SEQ ID NO:2; (d) a nucleotide sequence encoding the chemokine &bgr;-15 polypeptide having the complete amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 97519; (e) a nucleotide sequence encoding the mature chemokine &bgr;-15 polypeptide having the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 97519; and (f) a nucleotide sequence complementary to any of the nucleotide sequences in (a), (b), (c), (d), or (e) above. Preferably, the nucleic acid molecule will encode the mature polypeptide in SEQ ID NO:2 or encoded by the above-described deposited cDNA.
Further embodiments of the invention include isolated nucleic acid molecules that comprise a polynucleotide having a nucleotide sequence at least 90% identical, and more preferably at least 95%, 96%, 97%, 98% or 99% identical, to any of the nucleotide sequences in (a), (b), (c), (d), (e), or (f) above, or a polynucleotide which hybridizes under stringent hybridization conditions to a polynucleotide having a nucleotide sequence identical to a nucleotide sequence in (a), (b), (c), (d), (e), or (f), above. The polynucleotide which hybridizes does not hybridize under stringent hybridization conditions to a polynucleotide having a nucleotide sequence consisting of only A residues or of only T residues. An additional nucleic acid embodiment of the invention relates to an isolated

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polynucleotides encoding chemokine &bgr;-15 does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polynucleotides encoding chemokine &bgr;-15, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polynucleotides encoding chemokine &bgr;-15 will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3040696

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.