Polynucleotide encoding TNFL1

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S320100, C435S252300, C435S069100, C530S350000

Reexamination Certificate

active

06297367

ABSTRACT:

BACKGROUND OF THE INVENTION
Tumor necrosis factor (TNF) is a pro-inflammatory cytokine which is produced by a wide spectrum of cells. It has a key role in host defense and immunosurveillance, mediating complex cellular responses. In excess, TNF may have detrimental effects.
Two specific, high affinity cell surface receptors, p55 TNF-R and p75 TNF-R, function as transducing elements, providing the intracellular signal for cell responses to TNF. While both types of TNF receptors are expressed by almost all cell types, the p75 receptor has been shown to be expressed primarily by cells of the immune system (B and T cells), cells of myeloid origin, and endothelial cells. Both receptors participate in the induction of NF&kgr;B and interleukin-6, in the generation of lymphocyte activated killer (LAK) cells, and in the proliferation of natural killer (NK) cells, as well as in anti-proliferation, cytotoxicity, and apoptosis.
TNF signaling to cells is largely mediated by the p55 TNF-R, while the main function of the p75 surface receptor is “ligand passing,” i.e., TNF presentation to the p55 TNF-R. Presence of the cell surface p75 TNF receptor greatly enhances the rate of association of TNF to the p55 TNF receptor and may reverse the desensitization of p55 TNF-R to TNF. Pharmaceutical agents which affect p75 TNF-R may have a general impact on TNF function, including those activities in which the major signaling receptor is the p55 TNF-R.
The TNF-Rs also mediate many non-overlapping functions: the p55 receptor is involved in interleukin-2 receptor induction, anti-viral activities, growth stimulation, HLA antigen expression, and endothelial cell adhesion, while the p75 receptor mediates the TNF-induced thymocyte proliferation.
The p55 and p75 TNF-Rs are members of a superfamily which includes nerve growth factor receptor (NGFR), Fas antigen, CD27, CD30, CD40, OX40 and 4-1BB. The cysteine-rich domains of the extracellular part of these receptors are homologous to several viral proteins produced by cowpox virus, Shope fibroma virus, and the myxoma virus.
Because of the central role of TNF and its receptors in host defense and immunosurveillance, there is a need in the art to identify new members of the TNF and TNFR superfamilies.
SUMMARY OF THE INVENTION
It is an object of the invention to provide new members of the TNF and TNFR families, as well as methods of screening for compounds capable of modifying the activities of these proteins. This and other objects of the invention are provided by one or more of the embodiments described below.
One embodiment of the invention is an isolated human protein having an amino acid sequence which is at least 85% identical to an amino acid sequence selected from the group consisting of SEQ ID NOS:1, 2, 17 and 20. Percent identity is determined using a Smith-Waterman homology search algorithm using an affine gap search with a gap open penalty of 12 and a gap extension penalty of 1.
Another embodiment of the invention is a fusion protein comprising a first protein segment and a second protein segment fused together by means of a peptide bond. The first protein segment consists of a protein having an amino acid sequence selected from the group consisting of SEQ ID NOS:1, 2, 17 and 20.
Still another embodiment of the invention is a preparation of antibodies which specifically bind to a protein having an amino acid sequence selected from the group consisting of SEQ ID NOS: 1, 2, 17 and 20.
Even another embodiment of the invention is a cDNA molecule which encodes a protein having an amino acid sequence which is at least 85% identical to an amino acid sequence selected from the group consisting of SEQ ID NOS: 1, 2, 17 and 20. Percent identity is determined using a Smith-Waterman homology search algorithm using an affine gap search with a gap open penalty of 12 and a gap extension penalty of 1.
Yet another embodiment of the invention is a cDNA molecule which is at least 85% identical to a nucleotide sequence selected from the group consisting of SEQ ID NOS:6, 7, 18 and 19. Percent identity is determined using a Smith-Waterman homology search algorithm using an affine gap search with a gap open penalty of 12 and a gap extension penalty of 1.
A further embodiment of the invention is an isolated and purified subgenomic polynucleotide comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS:6, 7, 18 and 19 after washing with 0.2×SSC at 65° C. The nucleotide sequence encodes a protein having an amino acid sequence selected from the group consisting of SEQ ID NOS: 1, 2, 17 and 20.
Another embodiment of the invention is a construct comprising a promoter and
a polynucleotide segment encoding an amino acid sequence selected from the group consisting of SEQ ID NOS: 1, 2, 17 and 20. The polynucleotide segment is located downstream from the promoter. Transcription of the polynucleotide segment initiates at the promoter.
Still another embodiment of the invention is a host cell comprising a construct which comprises a promoter and a polynucleotide segment encoding an amino acid sequence selected from the group consisting of SEQ ID NOS: 1, 2, 17 and 20.
Even another embodiment of the invention is a recombinant host cell comprising a new transcription initiation unit, wherein the new transcription initiation unit comprises in 5′ to 3′ order (a) an exogenous regulatory sequence, (b) an exogenous exon, and (c) a splice donor site. The new transcription initiation unit is located upstream of a coding sequence of a gene. The coding sequence is selected from the group consisting of SEQ ID NOS:6, 7, 18 and 19. The exogenous regulatory sequence controls transcription of the coding sequence of the gene.
Yet another embodiment of the invention is a method of screening for a compound capable of modulating cell death inducing activity of a protein. A first population of cells and a protein are incubated in the presence of a test compound. The protein comprises an amino acid sequence selected from the group of amino acid sequences shown in SEQ ID NOS: 1-5, 17 and 20. A second population of cells and the protein are incubated in the absence of a test compound. Viability of the first and second populations is determined. A test compound which increases or decreases viability of the first population relative to the second population is identified as capable of modulating the cell death inducing activity of the protein.
Even another embodiment of the invention is a method of identifying a binding partner of a first protein. A first protein is incubated with a second protein. The first protein comprises an amino acid sequence selected from the group consisting of SEQ ID NOS:1-5, 17 and 20. Formation of a complex between the first and second proteins is detected. Formation of the complex identifies the second protein as a binding partner of the first protein.
The present invention thus provides the art with the amino acid sequences of proteins which are new members of the TNF and TNFR families, as well as nucleotide sequences of polynucleotides which encode the proteins. These proteins and polynucleotides can be used to enhance or decrease TNF activities thereby providing therapeutic benefits, such as induction of cell death, lymphoid organogenesis, or host bacterial resistance, and inhibition of endotoxic shock, contact hypersensitivity, delayed type hypersensitivity, or immunocompetence of a transplant recipient. Methods of diagnosing neoplasia or predisposition to neoplasia are also provided. Proteins of the present invention are also useful for identifying compounds which can regulate the TNF-like or TNFR-like activities of these proteins.


REFERENCES:
patent: 869 180 A1 (1998-10-01), None
patent: WO 94/01548 (1994-01-01), None
patent: WO 97/33902 (1997-09-01), None
patent: WO 98/18921 (1998-05-01), None
patent: WO 98/27114 (1998-06-01), None
patent: WO 98/55620 (1998-12-01), None
patent: WO 98/55621 (1998-12-01), None
patent: WO 99/11791 (1999-03-01), None
patent: WO 99/12964 (1999-03-01), None
Hilllier e

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polynucleotide encoding TNFL1 does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polynucleotide encoding TNFL1, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polynucleotide encoding TNFL1 will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2582418

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.