Polynucleotide encoding a Mouse 7-transmembrane GPR43 receptor

Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Recombinant dna technique included in method of making a...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S070100, C435S071100, C435S071200, C435S471000, C435S325000, C435S252300, C435S320100, C536S023500

Reexamination Certificate

active

06180365

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to newly identified polypeptides and polynucleotides encoding such polypeptides, to their use in therapy and in identifying compounds which may be agonists, antagonists and/or inhibitors which are potentially useful in therapy, and to production of such polypeptides and polynucleotides.
BACKGROUND OF THE INVENTION
The drug discovery process is currently undergoing a fundamental revolution as it embraces ‘functional genomics’, that is, high throughput genome- or gene-based biology. This approach is rapidly superseding earlier approaches based on ‘positional cloning’. A phenotype, that is a biological function or genetic disease, would be identified and this would then be tracked back to the responsible gene, based on its genetic map position.
Functional genomics relies heavily on the various tools of bioinformatics to identify gene sequences of potential interest from the many molecular biology databases now available. There is a continuing need to identify and characterize further genes and their related polypeptides/proteins, as targets for drug discovery.
It is well established that many medically significant biological processes are mediated by proteins participating in signal transduction pathways that involve G-proteins and/or second messengers, e.g., cAMP (Lefkowitz, Nature, 1991, 351:353-354). Herein these proteins are referred to as proteins participating in pathways with G-proteins or PPG proteins. Some examples of these proteins include the GPC receptors, such as those for adrenergic agents and dopamine (Kobilka, B. K., et al., Proc. Natl Acad. Sci., USA, 1987, 84:46-50; Kobilka, B. K., et al., Science, 1987, 238:650-656; Bunzow, J. R., et al., Nature, 1988, 336:783-787), G-proteins themselves, effector proteins, e.g., phospholipase C, adenyl cyclase, and phosphodiesterase, and actuator proteins, e.g., protein kinase A and protein kinase C (Simon, M. I., et al., Science, 1991, 252:802-8).
For example, in one form of signal transduction, the effect of hormone binding is activation of the enzyme, adenylate cyclase, inside the cell. Enzyme activation by hormones is dependent on the presence of the nucleotide, GTP. GTP also influences hormone binding. A G-protein connects the hormone receptor to adenylate cyclase. G-protein was shown to exchange GTP for bound GDP when activated by a hormone receptor. The GTP-carrying form then binds to activated adenylate cyclase. Hydrolysis of GTP to GDP, catalyzed by the G-protein itself, returns the G-protein to its basal, inactive form. Thus, the G-protein serves a dual role, as an intermediate that relays the signal from receptor to effector, and as a clock that controls the duration of the signal.
The membrane protein gene superfamily of G-protein coupled receptors has been characterized as having seven putative transmembrane domains. The domains are believed to represent transmembrane &agr;-helices connected by extracellular or cytoplasmic loops. G-protein coupled receptors include a wide range of biologically active receptors, such as hormone, viral, growth factor and neuroreceptors.
G-protein coupled receptors (otherwise known as 7TM receptors) have been characterized as including these seven conserved hydrophobic stretches of about 20 to 30 amino acids, connecting at least eight divergent hydrophilic loops. The G-protein family of coupled receptors includes dopamine receptors which bind to neuroleptic drugs used for treating psychotic and neurological disorders. Other examples of members of this family include, but are not limited to, calcitonin, adrenergic, endothelin, cAMP, adenosine, muscarinic, acetylcholine, serotonin, histamine, thrombin, kinin, follicle stimulating hormone, opsins, endothelial differentiation gene-1, rhodopsins, odorant, and cytomegalovirus receptors.
Most G-protein coupled receptors have single conserved cysteine residues in each of the first two extracellular loops which form disulfide bonds that are believed to stabilize functional protein structure. The 7 transmembrane regions are designated as TM1, TM2, TM3, TM4, TM5, TM6, and TM7. TM3 has been implicated in signal transduction.
Phosphorylation and lipidation (palmitylation or farnesylation) of cysteine residues can influence signal transduction of some G-protein coupled receptors. Most G-protein coupled receptors contain potential phosphorylation sites within the third cytoplasmic loop and/or the carboxy terminus. For several G-protein coupled receptors, such as the &bgr;-adrenoreceptor, phosphorylation by protein kinase A and/or specific receptor kinases mediates receptor desensitization.
For some receptors, the ligand binding sites of G-protein coupled receptors are believed to comprise hydrophilic sockets formed by several G-protein coupled receptor transmembrane domains, said sockets being surrounded by hydrophobic residues of the G-protein coupled receptors. The hydrophilic side of each G-protein coupled receptor transmembrane helix is postulated to face inward and form a polar ligand binding site. TM3 has been implicated in several G-protein coupled receptors as having a ligand binding site, such as the TM3 aspartate residue. TM5 serines, a TM6 asparagine and TM6 or TM7 phenylalanines or tyrosines are also implicated in ligand binding.
G-protein coupled receptors can be intracellularly coupled by heterotrimeric G-proteins to various intracellular enzymes, ion channels and transporters (see, Johnson et al., Endoc. Rev., 1989, 10:317-331). Different G-protein &agr;-subunits preferentially stimulate particular effectors to modulate various biological functions in a cell. Phosphorylation of cytoplasmic residues of G-protein coupled receptors has been identified as an important mechanism for the regulation of G-protein coupling of some G-protein coupled receptors. G-protein coupled receptors are found in numerous sites within a mammalian host. Over the past 15 years, nearly 350 therapeutic agents targeting 7 transmembrane (7 TM) receptors have been successfully introduced onto the market.
SUMMARY OF THE INVENTION
The present invention relates to mouse GPR43, in particular mouse GPR43 polypeptides and mouse GPR43 polynucleotides, recombinant materials and methods for their production. In another aspect, the invention relates to methods for using such polypeptides and polynucleotides, including the treatment of infections such as bacterial, fungal, protozoan and viral infections, particularly infections caused by HIV-1 or HIV-2; pain; cancers; diabetes, obesity; anorexia; bulimia; asthma; Parkinson's disease; acute heart failure; hypotension; hypertension; urinary retention; osteoporosis; angina pectoris; myocardial infarction; stroke; ulcers; asthma; allergies; benign prostatic hypertrophy; migraine; vomiting; psychotic and neurological disorders, including anxiety, schizophrenia, manic depression, depression, delirium, dementia, and severe mental retardation; and dyskinesias, such as Huntington's disease or Gilles dela Tourett's syndrome, hereinafter referred to as “the Diseases”, amongst others In a further aspect, the invention relates to methods for identifying agonists and antagonists/inhibitors using the materials provided by the invention, and treating conditions associated with mouse GPR43 imbalance with the identified compounds. In a still further aspect, the invention relates to diagnostic assays for detecting diseases associated with inappropriate mouse GPR43 activity or levels.
DESCRIPTION OF THE INVENTION
In a first aspect, the present invention relates to mouse GPR43 polypeptides. Such peptides include isolated polypeptides comprising an amino acid sequence which has at least 70% identity, preferably at least 80% identity, more preferably at least 90% identity, yet more preferably at least 95% identity, most preferably at least 97-99% identity, to that of SEQ ID NO:2 over the entire length of SEQ ID NO:2. Such polypeptides include those comprising the amino acid of SEQ ID NO:2.
Further peptides of the present invention include isolated polypeptides in which the amino acid s

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polynucleotide encoding a Mouse 7-transmembrane GPR43 receptor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polynucleotide encoding a Mouse 7-transmembrane GPR43 receptor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polynucleotide encoding a Mouse 7-transmembrane GPR43 receptor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2513447

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.