Polymorphs of an epothilone analog

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C540S456000, C540S462000

Reexamination Certificate

active

06982276

ABSTRACT:
There are provided in accordance with the present invention two crystalline polymorphs, designated Form A and Form B, respectively, as well as mixtures thereof, of an epothilone analog represented by the formulaAlso provided are methods of forming the novel polymorphs, therapeutic methods utilizing them and pharmaceutical dosage forms containing them.

REFERENCES:
patent: 6194181 (2001-02-01), Hofmann et al.
patent: 6204388 (2001-03-01), Danishefsky et al.
patent: 6365749 (2002-04-01), Kim et al.
patent: 6518421 (2003-02-01), Li et al.
patent: 6605559 (2003-08-01), Yamada et al.
patent: 6670384 (2003-12-01), Bandyopadhyay et al.
patent: 2002/0143038 (2002-10-01), Bandyopadhyay et al.
patent: 2003/0220295 (2003-11-01), Vite et al.
patent: 4138042.8 (1993-05-01), None
patent: 19542986.9 (1997-05-01), None
patent: 19639456.2 (1997-05-01), None
patent: 19636343.8 (1998-03-01), None
patent: 19645361.5 (1998-04-01), None
patent: 19645362.3 (1998-04-01), None
patent: 19647580.5 (1998-05-01), None
patent: 19701758 (1998-07-01), None
patent: 19707505.3 (1998-09-01), None
patent: 19713970 (1998-10-01), None
patent: 19720312 (1998-11-01), None
patent: 19821954 (1998-11-01), None
patent: 19726627 (1998-12-01), None
patent: 879 605 (1998-11-01), None
patent: 93/10121 (1993-05-01), None
patent: 97/19086 (1997-05-01), None
patent: 98/08849 (1998-03-01), None
patent: 98/22461 (1998-05-01), None
patent: 98/24427 (1998-06-01), None
patent: 98/25929 (1998-06-01), None
patent: 98/38192 (1998-09-01), None
patent: 98/47891 (1998-10-01), None
patent: 99/01124 (1999-01-01), None
patent: WO 99/02514 (1999-01-01), None
patent: 99/03848 (1999-01-01), None
patent: 99/07692 (1999-02-01), None
patent: WO 99/27890 (1999-06-01), None
patent: 99/39694 (1999-08-01), None
patent: 99/42602 (1999-08-01), None
patent: 99/43320 (1999-09-01), None
patent: 99/43653 (1999-09-01), None
patent: 00/00485 (2000-01-01), None
patent: 00/37473 (2000-06-01), None
patent: 00/66589 (2000-11-01), None
Balog, A., et al., “Total Synthesis of (−)-Epothilone A”,Angew. Chem. Int. Ed. Engl., vol. 35, No. 23/24, 2801-2803 (1996).
Bertini, F., et al., “Alkenes from Epoxides by Reductive Elimination with Magnesium Bromide-Magnesium Amalgam”,Chem. Commun.,144 (1970).
Bollag, D.M., et al., “Epothilones, A New Class of Microtubule-stabilizing Agents with a Taxol-like Mechanism of Action”,Cancer Res. 55, No. 11, 2325-2333 (1995).
Fujisawa, T., et al., “Deoxygenation of Epoxides to Olefins with FeCl3—n-BuLi System”,Chem. Lett., 883-886 (1974).
Fujiwara, Y., et al., “Reductive Coupling of Carbonyl Compounds to Olefins by Tungsten Hexachloride-Lithium Aluminum Hydride and Some Tungsten and Molybdenum Carbonyls”,J. Org. Chem., vol. 43, No. 12, 2477-2479 (1978).
Gladysz, J. A., et al., “Deoxygenation of Epoxides by Metal Atom Cocondensation”,J. Org. Chem., vol. 41, No. 22, 3647-3648 (1976).
Hofle, G., et al., “Epothilone A and B—Novel 16-Membered Macrolides with Cytotoxic Activity: Isolation, Crystal Structure, and Conformation in Solution”,Angew. Chem. Int. Ed. Engl., vol. 35, No. 13/14, 1567-1569 (1996).
Hofle, G., et al., “N-Oxidation of Epothilone A-C and O-Acyl Rearrangement to C-19 and C-21 -Substituted Epothilones”,Angew. Chem. Int. Ed., vol. 38, No. 13/14, 1971-1974 (1999).
Inokuchi, T., et al., “Opening of Epoxides to Olefins or Halohydrins with Vanadium(II)-Tetrahydrofuran or Vanadium(III)-Tetrahydrofuran Complexes”,Synlett, No. 6, 510-512 (1992).
Kowalski. R. J., et al., “Activities of the Microtubule-stabilizing Agents Epothilones A and B with Purified Tubulin and in Cells Resistant to Paclitaxel (Taxol®)”,J. Biol. Chem., vol. 272, No. 4, 2534-2541 (1997).
Kupchan, S. M., et al., “Reductive Elimination of Epoxides to Olefins with Zinc-Copper Couple”,J. Org. Chem., vol. 36, No. 9, 1187-1190 (1971).
Martin, M. G., et al., “Epoxides as Alkene Protecting Groups. A Mild and Efficient Deoxygenation”,Tetrahedron Letters, vol. 25, No. 3, 251-254 (1984).
McMurry, J. E., et al., “Reduction of Epoxides to Olefins with Low Valent Titanium”,J. Org. Chem., vol. 40, No. 17, 2555-2556 (1975).
McMurry, J. E., et al., “Some Deoxygenation Reactions with Low-Valent Titanium (TiCl3/LiAlH4)”,J. Org. Chem., vol. 43, No. 17, 3249-3254 (1978).
Meng, D., et al., “Remote Effects in Macrolide Formation Through Ring-Forming Olefin Metathesis: An Application to the Synthesis of Fully Active Epothilone Congeners”,J. Am. Chem. Soc., vol. 119, No. 11, 2733-2734 (1997).
Nicolaou, K. C., et al., “An Approach to Epothilones Based on Olefin Metathesis”,Angew. Chem. Int. Ed. Engl., vol. 35, No. 20, 2399-2401 (1996).
Nicolaou, K. C., et al., “Total Synthesis of Epothilone A: The Macrolactonization Approach”,Angew. Chem. Int. Ed. Engl., vol. 36, No. 5, 525-527 (1997).
Nicolaou, K. C., et. al., “Designed Epothilones: Combinatorial Synthesis, Tubulin Assembly Properties, and Cytotoxic Action against Taxol-Resistant Tumor Cells”,Angew. Chem. Int. Ed. Engl., vol. 36, No. 19, 2097-2103 (1997).
Nicolaou, K. C., et al., “The Olefin Metathesis Approach to Epothilone A and Its Analogues”,J. Am. Chem. Soc., vol. 119, No. 34, 7960-7973 (1997).
Nicolaou, K. C., et al., “Total Syntheses of Epothilones A and B via a Macrolactonization-Based Strategy”,J. Am. Chem. Soc., vol. 119, No. 34, 7974-7991 (1997).
Nicolaou, K. C., et al., “Synthesis of Epothilones A and B in Solid and Solution Phase”,Nature, vol. 387, 268-272 (1997).
Nicolaou, K. C., et al., “Synthesis of Epothilones A and B in Solid and Solution Phase” (Correction toNature387, 268-272 (1997)),Nature, 390, 100 (1997).
Raucher, S., et al., “Total Synthesis of (+)-Dihydrocostunolide via Tandem Cope-Claisen Rearrangement”,J. Org. Chem., vol. 51, No. 26, 5503-5505 (1986).
Sato, M, et al., “Reduction of Organic Compounds with Low-Valent Niobium (NbCl5/NaAlH4)”,Chem. Letters, 157-160 (1982).
Schinzer, D., et al., “Total Synthesis of (−)-Epothilone A”,Angew. Chem. Int. Ed. Engl., vol. 36, No. 5, 523-524 (1997).
Schobert, R., et al., “Reduction and Isomerization of Oxiranes and α-Diazoketones by Various Early Transition Metallocenes”,Synlett, vol. 8, 465-466 (1990).
Sharpless, K. B., et al., “Lower Valent Tungsten Halides. A New Class of Reagents for Deoxygenation of Organic Molecules”,J. Amer. Chem. Soc., vol. 94, No. 18, 6538-6540 (1972).
Su, D.-S., et al., “Total Synthesis of (−)-Epothilone B: An Extension of the Suzuki Coupling Method and Insights into Structure-Activity Relationships of the Epothilones”,Angew. Chem. Int. Ed. Engl., vol. 36, No. 7, 757-759 (1997).
Su, D.-S., et al., “Structure-Activity Relationships of the Epothilones and the First In Vivo Comparisons with Paclitaxel”,Angew. Chem. Int. Ed. Engl., vol. 36, No. 19, 2093-2096 (1997).
Victory, S. F., et al., “Relative Stereochemistry and Solution Conformation of the Novel Paclitaxel-Like Antimitotic Agent Epothilone A”,Bioorg. Med. Chem. Letts., vol. 6., No. 7, 893-898 (1996).
Winkler, J. D., et al., “A Model For The Taxol (Paclitaxel)/Epothilone Pharmacophore”,Bioorg. Med. Chem. Letts., vol. 6, No. 24, 2963-2966 (1996).
Yang, Z., et al., “Total Synthesis of Epothilone A: The Olefin Metathesis Approach”,Angew. Chem. Int. Ed. Engl., vol. 36, No. 1/2, 166-168 (1997).
Bollag, D., et al., “Epothilone, A New Structural Class of Microtubule Stabilizer”, Abstract,Proc. Am. Assoc. Cancer Res., vol. 36, 86 Meet. 454 (1995).
Bollag, D., “Epothilones: Novel Microtubule-Stabilising Agents”,Expert Opin. Invest. Drugs, vol. 6, No. 7, 867-873 (1997).
Bertinato, P., et al., “Studies Toward a Synthesis of Epothilone A: Stereocontrolled Assembly of the Acyl Region and Mo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polymorphs of an epothilone analog does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polymorphs of an epothilone analog, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polymorphs of an epothilone analog will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3586940

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.